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Chapter 1

Predictive Quantization and Joint
Time-Frequency Interpolation
Technique for MIMO-OFDM
Precoding*

Chapter Abstract

Precoding transmissions in wireless MIMO systems is essential to enable optimal utiliza-
tion of the spatial degrees of freedom. However, communicating the precoding matrices
to the transmitter from the receiver is challenging, owing to large feedback requirements.
Past work has shown that predictive quantization in time, as well as interpolation over
frequency can be used for effective feedback of the precoders. Moreover, interpolation
strategies for MIMO systems where the number of antennas at the transmitter (NT) is
different from the number of antennas at the receiver (NR), using the well known uni-
tary group geodesic requires quantization of redundant information, thereby increasing
feedback overheads. Our key contributions cover two aspects. First, we propose an effi-
cient interpolation strategy for systems with NT , NR. Building upon this, we propose a
predictive quantization as well as an interpolation strategy to exploit the available time-
frequency correlations in the fed back precoders jointly. The key insight we use is that
local tangent spaces in the underlying manifold structure of the precoder matrices per-
mit effective combination of both temporal and frequency domain information for more
accurate precoder reconstruction. Simulations reveal that by jointly exploiting the time-
frequency correlations we obtain a significant improvement in achievable rate as well as
BER reduction when compared to existing strategies which exploit the time-frequency
correlations independently.

*This work has been presented at IEEE ICC 2019 [1], and an extended
journal version has been submitted to IEEE Transactions on
Communications
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1.1 Introduction

The use of orthogonal frequency division multiplexing (OFDM) with N subcarriers in
multi-antenna (NT × NR) wireless systems allows the treatment of a frequency-selective
channel as a frequency-flat multiple-input multiple-output (MIMO) channel on a per
subcarrier basis. This enables low-complexity receiver implementations, particularly for
equalization. To maximally utilize the benefit of having MIMO antennas, the receiver
needs to feed back channel state information (CSI) to the transmitter, which then uses
it for precoding (matrix transformation of the input signal). Precoding enables efficient
allocation of power across transmit antennas by waterfilling, and efficient signaling to
increase rate while reducing bit-error-rate (BER) [2].

Modern wireless OFDM systems support thousands of subcarriers, thus the CSI re-
quirement for precoding is rather large. However, only a certain number of subcarriers
are reserved for CSI transmission in practice. Also, the receiver has to quantize these
fed back matrices using just a few bits, due to the limited feedback constraint. Several
standards consider the use of limited feedback to enhance system performance CITE. In
the MIMO case, since these precoding matrices are high dimensional entities, quantiz-
ing them with few bits incurs substantial quantization error. The key challenge at the
transmitter is to both estimate the precoding matrices at the non-fed back subcarriers
via some interpolation algorithm, and to counter the substantial quantization error that
arises due to quantization with just a few bits via a predictive quantization algorithm.
This necessitates exploiting the correlations across frequency for interpolation algorithms
[3] to estimate precoding matrices at subcarriers for which the receiver did not provide
feedback. To address the quantization error issue, the transmitter requires the receiver
to utilize the available correlations in the past fed back precoders and perform predic-
tive quantization, instead of just independently quantizing the matrices for each OFDM
frame separately. This enables lowering of quantization error with time and improves the
performance of the MIMO system [4, 5].

One of the key challenges in designing the interpolation and predictive quantization
algorithms is that the optimal precoding matrices for communication scenarios like wa-
terfilling, ML receiver, MMSE/ZF linear receiver etc do not form a vector space, which
renders linear algorithms for interpolation and predictive quantization ineffective. How-
ever, these matrices have an underlying manifold geometry [4–7], which can be exploited
to design the required algorithms to interpolate and predict. A traditional method of ob-
taining the precoding matrix is to take the SVD of the channel matrix at the receiver and
feed back the resulting quantized matrices which represent the directions and magnitudes
of the channel eigenmodes, to the transmitter. Depending on the degrees of freedom that
the transmitter has in allocating power to the N orthogonal streams (corresponding to
total N subcarriers) emanating from its NT transmit antennas, the optimal precoders to
maximize the achievable rate reside either on the Grassmannian manifold or the Stiefel
Manifold [4]. When the transmitter treats each channel eigenmode in the same manner,
viz. doesn’t discriminate between the strongest and weakest channel eigenmodes, the
optimal precoders reside on the Grassmannian manifold, since the required information
for the receiver to feed back to the transmitter constitutes of just the subspace formed
by directions of the channel eigenmodes. When the receiver uses ML algorithm to decode
the constellation points, the optimal precoders also reside on Grassmannian manifold [6].
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However, the transmitter can also allocate the transmit power among the N orthog-
onal streams emanating from its NT transmit antennas via waterfilling to prioritize the
benefits offered by stronger eigenmodes. The receiver, in this case, needs to feed back
the directions of the individual channel eigenmodes as well, and not only the subspace
that they form. Hence, in the waterfilling case, the optimal precoders lie on the Stiefel
manifold. In the waterfilling case, when NT = NR, the optimal precoders form unitary
matrices and reside on the unitary group. When the receiver employs MMSE decoding
of the constellation points, the optimal precoders reside on permutation invariant flag
manifold [6] instead of the Stiefel manifold. The permutation invariant flag manifold is
actually a lower dimensional manifold than the Stiefel manifold. However, when compared
to Grassmannian manifold, the flag manifold provides more degrees of freedom, and hence
it is a space in middle of Grassmannian and Stiefel when analyzing the manifold dimen-
sions. In this paper, we consider two performance metrics of a point-to-point MIMO link,
achievable rate obtained via optimal power allocation using waterfilling and BER using
MMSE decoding. The optimal precoders for the former case, obtained via SVD of the
channel matrix reside on the Stiefel Manifold. Since the Stiefel manifold has been studied
more extensively than the Flag manifold, we pay a dimensional penalty and employ the
Stiefel manifold precoders for the BER MMSE case as well. We capture the temporal,
frequency correlations jointly to perform both predictive quantization and interpolation
by utilizing the underlying Stiefel manifold structure.

Exploiting the manifold structure with local linear operations in the tangent space
allows for algorithms to interpolate precoders at those subcarriers where feedback is not
available at the transmitter. This also allows the receiver to improve upon the quantization
error using predictive quantization methods. The most popular interpolation strategy for
unitary precoders is the Geodesic scheme [3], which interpolates across two fed back
unitary precoding matrices by joining them with the shortest path between them, and
splitting the path into equal sections to obtain precoders at subcarriers where feedback
is unavailable. Although not very explicit, this scheme also uses the linearity of the local
tangent space. The role of local linear tangent spaces is more explicit in [4, 5], both of
which first utilize the tangent spaces to make predictions for the new precoders at both the
transmitter and the receiver, and then capture the channel innovation by quantizing the
tangent space near the obtained prediction at the receiver. The reciever then feeds back
the quantized direction in the tangent space to the transmitter so that the transmitter
obtains a refined estimate for the new precoder from the predicted precoder.

Several past approaches have largely exploited frequency or temporal correlation in
isolation for interpolation and prediction [4, 5, 8–13]. For the case where the precod-
ing matrix is not square (NT , NR), temporal correlation has been used in [4] and an
interpolation algorithm has been suggested in [7]. A non-manifold based approach to si-
multaneously capture frequency and temporal correlation is presented in [14]. Capturing
time-frequency correlations jointly for adaptive quantization on the Grassmanian mani-
fold for the MISO communication setting has been presented in [15]. Past work that has
considered utilizing the manifold structure for interpolation algorithms has largely been
concerned with unitary group [3, 10], where the algorithms are implemented over the full
NT × NT unitary space. When NT > NR, the effective dimensions are given by NT × NR
matrices residing in the Stiefel manifold. Therefore, algorithms for limited feedback that
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operate over the complete unitary space are redundant. When NT , NR, operating over
the Stiefel manifold, allows working with the effective dimensions of the optimal precoder
matrices, thereby reducing the CSI overhead. However computing explicit geodesics over
the Stiefel manifold is challenging [16, 17]. In recent work, a Lloyd type codebook scheme
has been suggested for direct quantization of matrices residing in the Stiefel manifold
[18], and it has been shown that explicit quasi-geodesics can be computed over the Stiefel
manifold using the Cayley exponential lifting-retraction pair [19]. We exploit both of
these recent results to reduce the overhead requirement by quantizing at the receiver and
interpolating at the transmitter, both while working with the effective dimensions of the
Stiefel manifold.

In addition to working with the Stiefel manifold quasi-geodesics, we also focus on
jointly exploiting the temporal and the frequency correlation for efficient limited CSI
feedback. To the best of our knowledge, prior work has considered quantization over
the Stiefel manifold only in the presence of temporal correlations [4], or in the frequency
domain [7], but not jointly. Exploiting temporal and frequency correlation presents novel
challenges, and we propose a predictive quantization and interpolation strategy that can
be implemented over the Stiefel manifold, that builds upon the ideas presented in [4, 11,
15]. The novel idea here is that the local tangent space, in addition to offering linearity
for easier mathematical modeling, also allows for effective combination of both temporal
and frequency domain information (Also suggested for the MISO Grammanian scenario
in [15]), available in the past precoding matrices fed back to the transmitter. This allows
for much better utilization of the limited feedback obtained in the past, for more effective
quantization and interpolation, thereby significantly improving the system performance.

We provide extensive simulations to illustrate the benefits of our approach in terms
of improving the BER, the achievable rate and channel estimation error (measured via
the chordal metric). Our simulations for various mobility conditions as well as different
wireless channel profiles reveal that, using 6 bits per fed back precoder for the 4×2 MIMO
channel, we are able to reduce the Eb/N0 requirement by around ∼ 3 dB for the same
BER, when compared to the earlier temporal prediction based approaches. In addition,
the achievable rate we obtain using our limited feedback scheme is close to 95% of the
rate achievable using perfect precoder knowledge for each subcarrier at the transmitter.

The following points were covered in this paper and not in the conference version [1]:

1. Detailed solution of the optimization problem proposed for obtaining unit step tan-
gent matrices Ti,t, Fi,t , along with a complete description of the lifting/retraction
maps used.

2. Evaluation of the presented algorithm for joint time-frequency interpolation and pre-
dictive quantization on the channels generated in accordance with the ITU Pedes-
trian Channel model, with 64 subcarriers

3. Achievable rate results for the proposed interpolation scheme on the Stiefel Manifold
utilizing the Cayley exponential maps

The rest of the paper is organized as follows. Section 1.2 describes the system model
and SVD based precoding schemes. Section 1.3 elaborates on interpolation directly on
the Stiefel Manifold via the Cayley lifting map. We present a frequency hopping strategy,
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Figure 1.1: Sample point-to-point MIMO-OFDM setting that we consider, with unequal number of
transmit and receive antennas. The system shown is a 4× 2 system, where the precoding matrix Ũi,t is a
4 × 2 with ŨH

i,tŨi,t = I2. Channel estimates at the receiver are used to feed back Ũi,t to the transmitter.

predictive quantization technique and joint time-frequency interpolation scheme for pre-
coders on the Stiefel manifold in Section 1.4. Section 1.5 presents the simulation results
and finally Section 1.6 concludes.

1.2 System Model

We consider a point-to-point MIMO-OFDM wireless system that has NT transmit an-
tennas and NR receive antennas. The available bandwidth is divided into N subcarriers
such that each subcarrier has a nearly flat frequency response, as is commonly the case
in the OFDM systems. The transmitter communicates an Ns × 1 data vector, where
Ns ≤ min(NT, NR), and the NT × Ns precoding matrix maps the Ns × 1 data vector onto
the NT ×1 transmit vector emanating out of the transmitter. In this discussion, we assume
that NT > NR and Ns = NR. Keeping notations consistent with [4], the NR×1 data stream
received is denoted by

yi,t = HH
i,tŨi,txi,t + wi,t

where Ũi,t ∈ C
NT×NR denotes the precoding matrix used by the transmitter, which is a

function of quantized channel information fed back by the receiver, yi,t ∈ C
NR×1 is the

received data stream, xi,t ∈ C
NR×1 denotes the transmitted signal at the i-th subcarrier

(i ∈ [0, . . . N − 1]), of the t-th OFDM frame, Hi,t ∈ C
NT×NR denotes the MIMO channel

matrix and wi,t denotes the i.i.d. complex Gaussian noise with wi,t ∼ NC(0, N0INR ) (N0 is
the noise variance). Using a MMSE decoder and the received yi,t , one obtains an estimate
of xi,t , denoted by x̂i,t . The system block diagram is presented in in Fig. 1.1.

We assume that the channel matrices Hi,t are estimated at the receiver exactly. If the
exact channel matrices Hi,t are somehow made available at the transmitter, the optimal
policy at the transmitter is to use the right singular vectors of HH

i,t as the precoding

matrices Ũi,t to maximise the achievable rate. In particular, when we take the compact
SVD of Hi,t , we get,

Hi,t = Ui,tΣi,tVi,t, (1.1)
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and we have Ũi,t = Ui,t . Since Ui,t is a lower dimensional entity than Hi,t , it makes sense
for the receiver to quantize and feed back Ui,t instead of Hi,t , without losing out on the
feedback benefits. Notice that the matrices Ui,t reside on the Stiefel manifold St(NT, NR),
since the columns of Ui,t form a set of NR orthogonal vectors in NT dimensions. Given
practical limitations, only limited feedback is available from the receiver, and the objective
is to find ‘reasonable’ estimate of Ui,t at the transmitter, given by Ũi,t using the available
feedback bits.

Before proceeding, we discuss the geometry of the Stiefel manifold. The (compact)
Stiefel manifold, St(m, n) represents the set of all ordered m orthogonal vectors in the
vector space Cn [4]:

St(m, n) = {U ∈ Cn×m |UHU = Im}.

St(m, n) does not form a vector space, because of which linear algorithms to interpolate
and quantize are not effective, as these operations will result in violation of the UHU = Im
constraint. That is, to interpolate between A and B, with A,B ∈ St(m, n), evaluating λA+
(1 − λ)B, λ ∈ (0, 1) yields a result that does not necessarily belong to St(m, n). Similarly,
one can not use a linear prediction approach for predictive quantization. However, the
tangent space local to a point U ∈ St(m, n), defined as, TUSt(m, n), forms a linear vector
space that admits linear operations. The vector space property of the local tangent space
facilitates prediction and interpolation algorithms for SVD precoders in the MIMO-OFDM
setting.

We represent the considered limited feedback scenario by a time-frequency bins matrix
(Fig. 1.2), where the t-th row and the i-th column corresponds to the precoding matrix at
the t-th OFDM frame and the i-th subcarrier. The matrix is sparsely fed back (in terms
of number of bins fed back) by the receiver to the transmitter, respecting the limited
feedback constraint. The transmitter reconstructs the time-frequency bins matrix at non-
fed back entries, by utilizing the temporal and frequency correlations of the nearby fed
back points. The metric we choose to quantify the closeness of a reconstruction of the
time-frequency bins matrix at the transmitter to the exact time-frequency bins matrix
observed at the receiver is d[t] = 1

N
∑N−1

i=0 ds (Ũi,t,Ui,t ), with ds being the chordal metric
between two points in Stiefel manifold, defined as,

ds (A,B) =

√√√ NR∑
j=1

d2
g (a j, b j ), dg (u, v) =

√
1 − |u∗v|2, (1.2)

where A,B ∈ St(NT, NR), and a j, b j are the j-th columns of A, B respectively, and
dg (a j, b j ) is the Grassmannian chordal distance between a j and b j [20]. Note here
that ds is actually not a distance metric on the Stiefel manifold, since ds (A,−A) = 0,
∀a ∈ St(NT, NR). However, it is still a suitable metric for error comaprison since the pre-
coders are nicely correlated and the π phase shifts in SVD order has been corrected for
manually while simulating (see Section 1.5 for more details). Observe that d[t1] at a par-
ticular time t1 represents the average chordal metric over the N subcarriers, between the
estimates and actual values of row t1 in the time-frequency bins matrix. Thus, the objec-
tive is to come up with a strategy to reconstruct the sparsely fed back time-frequency bin
matrix to minimize the chordal metric d[t] and bring the performance as close to complete
exact (i.e accurate unquantized precoding matrix available at each bin) time-frequency
bins matrix.
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Figure 1.2: Exploiting regularly spaced limited feedback scheme for N = 9, with (yellow) blue cells
indicating the (non) fed back indices. Frequency correlations are captured via the red interpolating
curves, and the temporal correlations are used to improve the quantization over time (shown implicitly
via green arrows).

With the sparsely fed back time-frequency bins matrix from the receiver, and the in-
dividual fed back precoders incurring substantial quantization errors, exploiting time and
frequency correlations is absolutely imperative for reducing d[t]. Independently utilizing
the temporal and frequency correlations to reconstruct the time-frequency bins matrix at
the transmitter can be performed using a frequency based interpolation scheme, coupled
with a time based predictive quantization scheme. We use the prior work on predictive
quantization over St(NT, NR) [4] and the interpolation scheme suggested over St(NT, NR)
in Section 1.3, to reconstruct the time-frequency bin matrix using the strategy shown in
Fig. 1.2, by sending feedback on regularly spaced subcarrier indices. The strategy de-
picted in Fig. 1.2 forms a baseline of comparison for our proposed scheme which exploits
time-frequency correlations jointly.

Our proposed joint frequency-time scheme is aided by a hopping strategy (Section
1.4), where the locations of fed back subcarriers are alternated with time. With the
use of the hopping scheme, we effectively combine both temporal and frequency domain
information in the tangent spaces of the Stiefel manifold, on which the precoders Ũi,t lie
(Section 1.4.1). With the predictive quantization scheme at the receiver, we show that the
quantization chordal metric (ds (Ũi,t,Ui,t )) decreases as t increases, viz. the receiver feeds
back refined estimates of each row of time-frequency bins matrix in subsequent OFDM
frame. In addition, we also propose a joint time-frequency interpolation scheme (Section
1.4.3) at the transmitter, to reconstruct the precoders at the missing subcarriers in every
OFDM frame by effectively using the refined fed back precoders at the transmitter. We
empirically show that jointly exploiting the frequency and temporal correlations improves
d[t] metric as compared to the independent utilization of the said correlations, which in
turn allows for lower BER and higher achievable rate.

1.3 Proposed Interpolation on St(NT, NR)

In this section, we describe the limited feedback scheme that allows reconstruction of
time-frequency bins matrix at the transmitter by exploiting the temporal and frequency
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correlations independently. To exploit temporal correlations, we utilize the past work in
[4], which described a predictive quantization scheme on the Stiefel manifold, although
that was limited only to a flat fading channel. A natural approach to exploit frequency
correlations by interpolating, would be to use geodesics, but true geodesic curves with
explicit solutions in the Stiefel manifold are not straightforward [7, 16, 17]. Recently,
[19] has proposed a unique quasi-geodesic curve using the Cayley type lifting-retraction
maps that enable direct interpolation on St(NT, NR), which we utilize in our proposed
interpolation scheme. Interpolation directly on St(NT, NR) has been discussed only in [7],
albeit for unquantized precoders. An alternate approach towards interpolating on Stiefel
manifold would be to project the matrix residing in the Stiefel manifold to the unitary
group, then use the well known {expm(·)− logm(·)} geodesic curve, and finally project the
unitary matrix back to the Stiefel manifold. Simulations reveal that quantization plays
a key role in performance comparison of the proposed interpolation scheme on Stiefel
manifold versus interpolating on the unitary group.

In order to obtain a unitary precoding matrix, we take the full SVD of MIMO channel
matrix observed at the receiver, instead of a compact SVD. The full SVD of Hi,t yields
Ui,tΣi,tVi,t , whereUi,t ∈ C

NT×NT is a unitary matrix, Σi,t ∈ C
NT×NR is a diagonal matrix, and

Vi,t ∈ C
NR×NR is a unitary matrix. The optimal precoder consists of the first NR columns

of Ui,t [3]. Selecting the first NR rows projects the unitary matrix back onto the Stiefel
manifold. We represent Ũi,t , as the matrix ultimately used by transmitter for precoding
(and interpolating across non-fed back points), which is obtained by quantizing Ui,t . The
usual approach using geodesic interpolation on the unitary group is as follows. Let us
suppose that Ũi,t have been fed back for subcarriers i1 and i2, i1 < i2. The transmitter
interpolates the precoding matrix at i-th subcarrier, with i1 < i < i2 using the geodesic
scheme in (1.3)

Ũi,t = Ũi1,texpm

(
i − i1
i2 − i1

logm(Ũ−1i1,tŨi2,t )
)
, (1.3)

where expm and logm refer to the matrix exponential and matrix logarithm, respectively.
The precoding matrices are then obtained by taking the first NR columns of the Ũi,t
matrices obtained after interpolation, since we require only the first NR right singular
vectors. The remaining NT − NR columns, which were included in the precoding matrix
to form a unitary matrix and enable interpolation with geodesics, are actually redundant.
Quantization with this redundant information would incur allocation of bits for unneeded
information.

We now propose a method to directly interpolate over the Stiefel manifold, thereby
obviating the need to quantize the redundant information. Let us suppose that Ũi,t have
been fed back for subcarriers i1 and i2, i1 < i2. We propose an interpolation method using
the Cayley exponential lifting and retraction maps at Ũii,t , denoted as Exp−1

Ũi1,t
(·) and

ExpŨi1,t
(·) respectively (for explicit definitions refer Appendix Section 1.7.1), consistent

with the notation in [19]. The transmitter interpolates the precoding matrix at i-th
subcarrier, with i1 < i < i2 using (1.4)

Ũi,t = ExpŨi1,t

(
i − i1
i2 − i1

Exp−1
Ũi1,t

(
Ũi2,t

))
. (1.4)

One thing to note is that the logm(·) maps NT × NT unitary matrices to NT × NT skew-
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Hermitian matrices. Similarly, the Exp−1(·) in Equation 1.4 maps NT × NR matrices on
St(NT, NR) to NT ×NT skew-Hermitian matrices, with the lower right (NT −NR)× (NT −NR)
minor being the null matrix. A more detailed treatment is available in Appendix Section
1.7.1.

Using the approach described in (1.4), the receiver needs to quantize and feed back
only the NT × NR matrices Ui,t , with UH

i,tUi,t = INR instead of NT × NT unitary matrices
Ui,t , thereby obviating the need to quantize redundant information by working in lower
dimensionsal Stiefel manifold. Improvement in performance (BER and achievable rate)
stemming from interpolation in reduced dimensions is quantified by our simulations in
Section 1.5.

Before concluding this section, we summarize the presented work till now and its
connection with the upcoming sections. Our novel contribution in this section is the
Cayley interpolation method over the Stiefel manifold, which utilizes recently proposed
Cayley exponential lifting-retraction pairs presented in [19]. An alternate method of
interpolating on the Stiefel manifold would be to utilize the unitary group geodesic, by
projecting matrices in the Stiefel manifold to and fro onto the unitary group. Section 1.5.1
empirically illustrates the performance benefits of the proposed Cayley interpolation over
unitary group geodesic interpolation. Using the proposed Cayley interpolation method
and the predictive quantization algorithm presented in [4] for flat fading channel, the
time-frequency bins matrix can be populated as shown in Fig. 1.2. The strategy in
Fig. 1.2 utilizes the temporal and frequency correlations independently to quantize the
precoders at feed back bins and interpolate the precoders at non fed back bins. The
upcoming section would elaborate upon a different strategy to perform the same (Fig.
1.3, 1.5). The key difference is that the scheme presented in Section 1.4 utilizes the joint
time-frequency correlations to perform both predictive quantization and interpolations.
In Section 1.5 it is empirically shown that the capturing joint correlations is indeed fruitful
and brings about significant performance gains.

1.4 Predictive Quantization and Joint Time-Frequency

Interpolation

In this section, we describe a predictive quantization method employed by the receiver,
coupled with an interpolation scheme at the transmitter to exploit both the temporal
and the frequency correlations, which enables more efficient reconstruction of the time-
frequency bins matrix with a lower d[t] metric and improved performance (BER and
achievable rate).

We first propose a hopping feed back strategy (Fig. 1.3), instead of feeding back pre-
coding matrices at regularly spaced subcarriers (Fig. 1.2). In the hopping strategy, the
fed back precoding matrices’ bins in the time-frequency bins matrix alternate with each
OFDM frame. The hopping strategy allows the receiver to exploit joint time-frequency
correlations for improved predictive quantization, enabling feedback to the transmitter
with lower quantization error. The transmitter gets feedback with reduced quantization
error, at time-alternated frequency positions in the time-frequency bins matrix, which it
then uses to reconstruct the matrices at non fed-back entries of the time-frequency bins
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matrix, using the proposed joint time-frequency interpolation scheme. Hence, our pro-
posed scheme improves upon both the aspects of the limited feedback precoding scheme,
viz. the predictive quantization at the receiver and interpolation algorithm at the trans-
mitter. This allows for more efficient utilization of the bits allocated for feed back of
precoding matrices, as compared to the scheme in Fig. 1.2, which exploited temporal and
frequency correlations independently instead of doing it jointly. This section describes
the explicit details pertaining to both of these proposed methods.

1.4.1 Hopping and Prediction Scheme

The approach for interpolation and prediction, shown in Fig. 1.2 feeds back precoders only
at a fixed set of equally spaced out subcarriers, and the remaining subcarriers’ precoders
are interpolated. This method has two disadvantages. One is that the precoders for those
subcarriers that lie in the middle of the fed back subcarriers, face larger interpolation
errors, since they are equally far from the fed back subcarriers. The other is that, when
predictively quantizing solely over the time-domain, we ignore the useful past information
present in the nearby subcarriers due to frequency correlations. We therefore suggest a
“hopping” scheme, in which the fed back frequency bins alternate with each OFDM frame,
to improve upon both the interpolation and quantization errors as compared to the scheme
in Fig. 1.2.

We now describe our hopping strategy both mathematically and using a visual illus-
tration (Fig. 1.3). Let D f be the frequency separation between two precoders estimated
at the receiver, and δ f be the frequency offset of the hopping scheme, both measured
in terms of number of subcarriers (depicted in Fig. 1.3). We choose D f as a factor of
N − 1, where N is the total number of subcarriers. We alternate between feeding back
the precoder at subcarriers {mD f |m = 0, 1, 2, . . . (N − 1)/D f } in one OFDM frame and
subcarriers {δ f + mD f |m = 0, 1, 2, . . . (N − 1)/D f − 1} in the next OFDM frame. We set
δ f = bD f /2c to address the issue of large interpolation errors in the middle of two fed
back precoders. This permits us to obtain a more accurate reconstruction of the precoder
variation across frequency due to reduced interpolation error. The hopping strategy is
visually illustrated in Fig. 1.3. The yellow boxes in Fig. 1.3 indicate the time-frequency
bins for which the quantized Ũi,t ∈ St(NT, NR) were fed back. The white boxes in the
same figure indicate the time-frequency bins for which the precoding matrices were not
fed back. In the subsequent discussions, we refer to the value of the precoding matrix at
subcarrier i at time t, viz. Ũi,t , merely by referring to it as the precoder at box (i, t).

We now present our proposed predictive quantization scheme which exploits the joint
time-frequency correlations arising out from the hopping feedback strategy. For the t-th
OFDM frame, i-th subcarrier, the transmitter uses the past fed back information to obtain
a prediction, say Pi,t for those boxes where the receiver would provide feedback in the next
time frame. This situation is depicted in Fig. 1.3 for the (t + 6)-th OFDM frame. The
feedback from the receiver indicates the quantized direction in the local tangent space of
Pi,t , going along which transmitter obtains the precoder estimate Ũi,t closest in terms of
chordal metric to the actual precoder Ui,t . The feedback helps transmitter capture channel
innovation (viz. difference between predicted precoder and actual precoder), whereas
the prediction utilizes the joint time-frequency correlations to minimize the innovation
feedback required (viz. reduce the chordal metric as far as possible between the predicted

A-9



and actual precoder).

Figure 1.3: Hopping strategy for N = 9, D f = 4, δ f = 2. The red, blue and green curves represent the
tangents on St(NT , NR), illustrated in Fig. 1.4.

For prediction, we use a lifting map to obtain local tangent spaces, optimize linear
functions in the local tangent spaces, and then finally use a retraction map that corre-
sponds to the chosen lifting map to return to the manifold. We obtain the tangent from
box (i, t) to nearby box ( j, s), denoted as T

j,s
i,t , viz. the tangent emanating from Ũi,t to Ũ j,s

using the chosen lifting operation, denoted by T
j,s
i,t = liftŨi,t

(
Ũ j,s

)
. The corresponding

retraction operation to return back to the manifold is given by retractŨi,t

(
T

j,s
i,t

)
. Since

the local tangent space forms a vector space, T
j,s
i,t can be approximated by a linear com-

bination of two matrices that represent the unit tangent matrices in time and frequency
domain separately, local to (i, t). That is, going along Fi,t from Ũi,t , gives an estimate
of Ũi+1,t , and similarly, going along Ti,t from Ũi,t , gives an estimate of Ũi,t+1. In other

words, there exist matrices Ti,t, Fi,t such that T
j,s
i,t ≈ Fi,t∆ f + Ti,t∆t, where ∆ f ,∆t ∈ Z are

steps in the time and frequency axes respectively, i.e. ∆ f = j − i and ∆t = s − t, the
signed frequency/time separation between boxes ( j, t) and (i, t). This construct allows us
to effectively combine information from temporal and frequency correlations in the local
tangent space (similar to discussions in [5]), captured by Ti,t and Fi,t respectively. We
estimate Fi,t,Ti,t using a least-squares fit over the known tangents to ( j, s) ∈ nbrsi,t (p).
nbrsi,t (p) (defined below) refers to the collection of p past neighbours of (i, t), which are
lifted to the tangent space local to i, t for estimating Fi,t,Ti,t . Let,

same freq nbrsi,t (p) = {(i, t − 2m) |m ∈ {1 . . . p − 1}}, and,

diff freq nbrsi,t (p, q) = {(i + qδ f , t − 2m + 1) |m ∈ {1 . . . p}}

where q = +1/− 1 indicates right/left neighbors. To estimate Fi,t,Ti,t , we require to invert
a matrix ∆i,t (1.7),(1.8). To ensure that ∆i,t is invertible, we take frequency separations
only on one side, which gives,

nbrsi,t (p) =



same freq nbrsi,t (p)
⋃
diff freq nbrsi,t (p, 1), for i , N − 1

same freq nbrsi,t (p)
⋃
diff freq nbrsi,t (p,−1), for i = N − 1

(1.5)
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where N is the total number of subcarriers, indexed from 0. In Fig. 1.3, the purple encir-
cled boxes represent nbrsi,t+4(3) and nbrsi+8,t+4(3) respectively. With the neighbouring
precoders defined, we frame the following objective function to estimate Fi,t,Ti,t,

Fi,t,Ti,t ← argminFi,t,Ti,t

∑
( j,s)∈nbrsi,t (p)

| |(Fi,t ( j − i) + Ti,t (s − t) − T
j,s
i,t ) | |2F (1.6)

where | | · | |F represents Frobenius norm. We take partial derivatives of the objective
function in (1.6) with respect to Fi,t,Ti,t and set them to be the null matrix (for a detailed
proof of the below equations, refer Appendix Section 1.7.2) to get the following expressions
for Fi,t,Ti,t after optimizing the objective function:

[
Fi,t
Ti,t

]
= ∆−1i,t



Σ j,s ( j − i)T j,s
i,t

Σ j,s (s − t)T j,s
i,t


(1.7)

∆i,t =

[
Σ j,s ( j − i)2 Σ j,s ( j − i)(s − t)

Σ j,s ( j − i)(s − t) Σ j,s (s − t)2

]
(1.8)

As an example, consider how to predict the precoding matrix at box (k, l): When the
temporal correlation of the channel is higher than the frequency correlation (measured
in terms of chordal metric to exact precoder at the receiver), (i, t) = (k, l − 2), and if
the frequency correlation is larger, (i, t) = (k ± 2, l − 1). The transmitter would require
additional feedback of 1 bit to indicate if the channel is correlated more nicely along
frequency than along time. Also, the receiver need not send this feedback at each time
instant, since this property of having nicer correlations along time/frequency would stick
for a long enough time (given the quasi-stationary property of channel). Hence, we expect
the net additional feedback amortized over time to be minimal. The chosen (i, t) is likely
to be the closest among the past fed back points, in terms of chordal metric, to the new
box (k, l).

The chosen (i, t) is referred to as the center (anchor point) on whose local tangent
space we optimize to obtain Fi,t,Ti,t using the known neighbouring boxes ( j, s) around
the center (i, t). We thus obtain the predicted precoder at box (k, l) given by Pk,l =

retract(Ũi,t, Fi,t (k − i) + Ti,t (l − t)). Pk,l is the outcome of the predictive quantization
algorithm for box (k, l). Note that these operations can be performed at the transmitter
independently without any additional feedback.

1.4.2 Quantization scheme

Having described the proposed prediction approach, we now describe the feed back ap-
proach. The feed back from the receiver signals the channel innovation, which the trans-
mitter uses to obtain a refined estimate of the precoder from the prediction (which was
the coarse estimate that the transmitter had without any additional feedback). Once we
obtain the prediction Pk,l , the receiver quantizes the tangent space local to Pk,l using a B
bit codebook and feeds back the optimal index, which the transmitter utilizes to obtain
the matrix Ũk,l , which is ultimately used for precoding. The approach used by us to
quantize the tangent space local to the prediction is based on previous work for the same
in [4, 5]. A codebook quantizing the local tangent space would have two components,
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Figure 1.4: Predictive Quantization algorithm to obtain Ũi,t+6, with closest previous value being Ũi,t+4.
The yellow curves represent the lifting/retraction operations. Pi,t+6 is the predicted value of Ũi,t+6. The
blue and green planes are the tangent spaces local to Ũi,t+4 and Pi,t+6 respectively. The local tangent
space at Pi,t+6 is then quantized and fed back to obtain Ũi,t+6.

quantization of the directions in the tangent space, and quantization of magnitudes of
steps taken in the quantized directions. We adopt the strategy in [4], which controls the
magnitude of tangent steps, by having two codebooks TCp ,T

C
m of different spreads, but

same 2B−1 base vectors ∈ TPk,l
St(NT, NR). The base vectors correspond to a collection of

2B−1 vectors which represent the quantized directions. This collection is referred to as
the base codebook T B hereafter. By spread of codewords, we mean the volume covered
by the codebook in the tangent space, with TCp covering more volume than TCm . The two

codebooks are concatenated to form a 2B length codebook TC. The receiver finds the
optimal index cn in TC by comparing the chordal metric given by (1.2), of each codeword
to the actual precoder Uk,l obtained from the compact SVD of the channel matrix. using
(1.9). The receiver then feeds back cn to the transmitter using B bits. The transmitter
uses the fed back cn and (1.10) to calculate Ũk,l ,

cn ← argmini∈2B
(
ds

(
Uk,l, retract(Pk,l,TC[i])

))
(1.9)

Ũk,l = retract(Pk,l,TC[cn]) (1.10)

We now describe the algorithm used to control the spread of the codebooks, as dis-
cussed in [4]. The base codebook (T B) consists of 2B−1 matrices belonging to the local
tangent space at Pk,l , which represent the 2B−1 quantized directions. The two code-
books, TCp ,T

C
m , have the same set of base vectors, but different spreads gsp and gsm i.e.

TC
{p/m} = gs {p/m}baseC (i.e. All codewords ∈ TB multiplied by gs {p/m} individually). Here

g is the growth factor and sp, sm control the spread of the two codebooks. Depending
on whether cn ≥ 2B−1, i.e. whether the optimum codeword is in TCp or TCm , the scale
parameter s[k], which in turn controls values of sp, sm is updated in the following manner,

sp = g
min(s[k−1]+1,0), sm = g

s[k−1]−1

s[k] =



min(s[k − 1] + 1, 0), for cn ∈ TCp
s[k − 1] − 1, otherwise
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with s[0] = 0. Intuitively, the algorithm reduces/increases the spread of the codebook till
the operation of reduction/increase is no longer beneficial, i.e. the optimum codeword
lies in the higher/lower spread codebook instead. The scheme we use for obtaining the
base codebook T B, however, differs slightly from the one presented in [4]. As discussed
in Section 1.3, the Cayley type lifting map takes matrices residing on the Stiefel manifold
and maps them to NT × NT skew Hermitian matrices. This allows for vector quantization
of the tangent space, since a skew Hermitian matrix can be easily converted to a vector,
by taking the upper triangular entries and stacking them in a vector. Vector quantization
for the base codebook, T B allows for isotropic 2B−1 quantized directions for the tangent
space local to Pk,l . [4] proposed a randomly initialized T B which does not guarantee
isotropic 2B−1 quantized directions, which can potentially hurt the performance of the
system in the cases when random initialization gives directions which are close to each
other. More details on codebook construction are provided in Section 1.5. This concludes
the proposed predictive quantization algorithm.

The discussion thus far has not assumed a particular lifting-retraction map, and is ex-
pected to work for any appropriate lifting-retraction pair. One point to note is that, when
considering (i, t) that is closest to the feedback subcarrier (k, l), we perform averaging as
suggested in [21] and also used in [4] with Ũi,t as the initial center of the averaging algo-
rithm. Averaging over the quantization errors in the anchor point of prediction algorithm,
i.e. Ũi,t , by using appropriate neighbour Ũ j,s improves the performance of the prediction
algorithm. Since the averaging algorithm was suggested for the same orthographic lift-
ing map proposed in [21], for the predictive algorithm, we use the orthographic lifting
map. However, the orthographic lifting map has a higher dimension than the Cayley type
maps discussed in Section 1.3. Therefore, we use the Cayley type map for the vector
quantization of the tangent space.

1.4.3 Joint Time-Frequency Interpolation scheme

Once the frequency-time bin matrix has been filled according to the hopping and predic-
tive quantization scheme proposed in Section 1.4.1, the next step at the transmitter is to
fill in the non fed back boxes (k, l) in the time-frequency bins matrix. This is also done
by estimating the unit step matrices, viz. Fi,t,Ti,t at the closest fed back subcarrier (i, t) to
subcarrier (k, l). To interpolate precoding matrix at (k, l), we use future nearby feed back
boxes of (i, t), as shown in Fig. 1.5, since past fed back boxes’ information has already
been captured in the predictive quantization algorithm. Define,

l nbrsi,t (p) = same freq nbrsi,t (−p)
⋃
diff freq nbrsi,t (−p,−1),

r nbrsi,t (p) = same freq nbrsi,t (−p)
⋃
diff freq nbrsi,t (−p, 1)

as the left/right neighbors at (i, t) (marked in dark/light green, purple for (i + 3, t + 1)
in Fig. 1.5). We obtain different maps for left frequencies F L

i,t ,T
L

i,t from l nbrsi,t (p),
and right frequencies F R

i,t ,T
R

i,t from r nbrsi,t (p), since directly obtaining Fi,t makes ∆i,t

singular. Hence, we get the following objective functions, for obtaining F L
i,t ,T

L
i,t , F

R
i,t ,T

R
i,t

F L
i,t ,T

L
i,t ← argminFi,t,Ti,t

(∑
( j,s)∈l nbrsi,t (p)

(
| |(Fi,t ( j − i) + Ti,t (s − t) − T

j,s
i,t ) | |2F

))
F R

i,t ,T
R

i,t ← argminFi,t,Ti,t

(∑
( j,s)∈r nbrsi,t (p)

(
| |(Fi,t ( j − i) + Ti,t (s − t) − T

j,s
i,t ) | |2F

))
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Figure 1.5: Joint interpolation strategy: Each fed back subcarrier (i,t) uses neighboring future information
to estimate precoder values for (k, l) ∈ cluster(i, t). The brown shaded cells form cluster(i + 3, t + 1).

Hence, the interpolated estimates for non-fed back boxes (k, l) at the transmitter are given
by,

Ũk,l =



retract(Ũi,t, F
L

i,t (k − i) + T L
i,t (l − t)), for k < i

retract(Ũi,t, F
R

i,t (k − i) + T R
i,t (l − t)), for k ≥ i

(1.11)

The lifting-retraction maps used for interpolation in (1.11) are the Cayley exponential
type lifting maps discussed in Section 1.3. The fed back boxes (i, t) by the receiver obtained
by predictive quantization act as centers (Ũi,t in (1.11)) to obtain the interpolated estimate
of boxes (k, l) ∈ cluster(i, t), which is defined as

cluster(i, t) =




{
(i − δ f + p, t + q) |p ∈ {0, 1, . . . 2δ f }, q ∈ {0, 1}

}
\ (i, t), for i , {0, N − 1}{

(i + p, t + q) |p ∈ {0, 1, . . . δ f }, q ∈ {0, 1}
}
\ (i, t), for i = 0{

(i − δ f + p, t + q) |p ∈ {0, 1, . . . δ f }, q ∈ {0, 1}
}
\ (i, t), for i = N − 1

The joint time-frequency interpolation method is visually illustrated in Fig. 1.5. Having
described the strategies used by the receiver to quantize and feed back precoding matrices,
and at the transmitter to estimate the precoders at the non fed back bins of the time-
frequency bins matrix, we now explain the strategy used by the receiver to quantize and
the transmitter to interpolate the singular values arising from SVD. For optimal power
allocation via waterfilling, the singular values should also be fed back to the transmitter.
We quantize these using vector quantization and feed them back on regularly spaced
subcarrier frequency indices, such as 0, 33, (33×2), . . . , (33×31 = 1023) for 1024 subcarriers.
Predictive quantization is not performed for the singular values. At the receiver, these
are interpolated at the unknown subcarriers using linear interpolation,

σi =
(
σprev(i)(next(i) − i) + σnext(i)(i − prev(i))

)
/(next(i) − prev(i))

where next(i), prev(i) indicate the previous/next fed back point corresponding to non fed
back point i, σ j denotes the singular values corresponding to subcarrier j.
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1.5 Simulation Results

The algorithms were simulated using the IT++ library through the Python wrapper py-
itpp [22]. Channels were generated using Jake’s model for both ITU Vehicular-A and ITU
Pedestrian-A profiles, mentioned as appropriate in the following section. The simulations
have been performed for NT = 4 and NR = 2.

SVD of a matrix is inherently not unique, and hence the computation algorithms
used to perform SVD of Hi,t to obtain Ui,t as explained in Section 1.2 may not provide a
continuous sequence of Ui,t matrices. Hence, it is required to correct for abrupt changes in
Ui,t , while simulating the algorithm, which was also performed in [4]. We have corrected
for abrupt changes in Ui,t by forcing the first row of the Ui,t (viz. the left matrix obtained
from SVD of Hi,t , (1.1)) to have positive real numbers. This is achieved via multiplying
Ui,t by diagonal matrix corresponding to conjugate angle exponentials of the complex
numbers in the first row of Ui,t , which ensures a continuous sequence of Ui,t obtained via
SVD of Hi,t .

1.5.1 Proposed Interpolation on St(NT, NR)

We consider an OFDM system with N = 1024 subcarriers with ITU Vehicular-A channel
model for the simulation of the proposed interpolation on St(NT, NR) and it’s comparison
with unitary group geodesic. The receiver feeds back the quantized precoder Ũi,t and Ũi,t
for 32 equally spaced feedback points at indices 33k, k = 0, 1, 2 . . . 31. The transmitter
interpolates over 4 × 2 Ũi,t matrices via (1.4) and over 4 × 4 Ũi,t matrices via (1.3) for
precoder estimation at non-fed back subcarriers.

Codebook Generation

A 6 bit codebook for both 4×2 and 4×4 matrices is constructed using the Lloyd codebook
algorithm [18]. This is done by generating 10,000 such Ui,t ’s and Ui,t ’s. We, therefore,
use 32 × 6 = 192 bits per OFDM frame for precoder feedback for both the cases.

Results

The results in Fig. 1.6 indicate the BER performance (uncoded QPSK, MMSE equaliza-
tion, 1000 symbols per subcarrier) and were obtained by averaging over 100 independent
simulation runs. We observe approximately 3 dB gain at 10−3 BER when using the Cayley
Exp. map (1.4) instead of the unitary group geodesic scheme (1.3) for interpolation. Note
that, when interpolation is done over the ideal unquantized precoders (i.e. over Ui,t , Ui,t ,
instead of Ũi,t , Ũi,t), we do not observe performance benefits.

This ascertains the fact that reduction in BER is achieved since we do not quantize
redundant information when interpolating directly on St(NT, NR), instead of the unitary
group. St(NT, NR) is a 2NT NR−N2

R dimensional manifold, whereas NT×NT unitary matrices
form N2

T dimensional manifold. By quantizing on the unitary manifold for the purpose
of using the unitary group geodesic to interpolate, we actually pay a dimensional penalty
of (NT − NR)2 while quantizing. In the chosen 4 × 2 MIMO configuration, by projecting
matrices in St(4, 2) to/fro 4 × 4 unitary matrix and then interpolating via unitary group
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Figure 1.6: BER observed in a 4 × 2 MIMO system when using unitary group Geodesic interpolation [3]
and Cayley Exponential interpolation as discussed in Section 1.3. The channel had the ITU Vehicular-A
profile, and OFDM with 1024 subcarriers was used.

geodesic, we pay a dimensional penalty of 4. By interpolating directly over the Stiefel
manifold, we avoid this dimensional penalty and hence encode more information with
lesser quantization error using the same number of bits. However, in MIMO channels
where NR ≈ NT , the expected gain would reduce, since the dimensional penalty reduces.

When the singular values are quantized and fed back to enable waterfilling, we observe
improvements in achievable rate as well. A 2 bit codebook obtained via k-means clustering
of about 1000 independent sample singular values was used to feed back quantized singular
values for waterfilling. By allocating 2 bits at each fed back subcarrier for the singular
values, we observe a 14% improvement in achievable rate at 0 dB SNR. We see in Fig.
1.7 that the 14% improvement is not an “average” improvement, and that the proposed
scheme is better than geodesic unequivocally at each subcarrier index by approximately
14%. In conclusion to this subsection, we empirically show that interpolating with the
Cayley exponential map provides performance benefit over interpolating witht the unitary
group geodesic.

1.5.2 Predictive Quantization and joint time-frequency based
interpolation scheme

We have simulated our proposed scheme for both ITU Vehicular-A and Pedestrian-A
channel models. For the Vehicular channel model, number of subcarriers N were chosen
to be 1024 and for Pedestrian channel model, we chose N to be 64. We consider the
hopping pattern of feedback indices (shown in Fig. 1.3), i.e. δ f = 16 (4), with D f = 33
(9) when N is 1024 (64) respectively. To compare this with the time based predictive
quantization and frequency interpolation scheme as in Fig. 1.2, we feed back indices of
the form 33k (9k) (N = 1024 (64)). For interpolation in the time based approach (Fig.
1.2), we utilize the Cayley Exp. map. The simulations for the algorithm were done for a
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Figure 1.7: The achievable rate for a 4×2 MIMO system when using unitary group Geodesic interpolation
[3] and Cayley Exponential interpolation as discussed in Section 1.3. The y-axis denotes the average
instantantaneous achievable rate as a percentage of the maximum achievable rate possible given full CSI
at the transmitter. Other assumptions are similar to those in Fig. 1.6.

normalized Doppler fdTs = 3.5 × 10−4, until otherwise mentioned.

Codebook generation

Since both the time based and hopping based predictive quantization methods predict
based on past fed back information, we need to intitialize the system via an independent
codebook based quantization [18] . We initialize the system with the 6 bit Lloyd code-
book for St(4, 2) obtained in Section 1.5.1. Once sufficient past values of Ũi,t have been
quantized and fed back in advance, the algorithms can be used to start improving upon
the quantization chordal error by exploiting the correlations available. An additional 2
bit k-means codebook was used to feed back quantized singular values for waterfilling.

To obtain the base codebook, T B for TPk,l
St(NT, NR), we consider 10,000 independent

channel evolutions. We utilize evolution of the channel over 10 OFDM frames’ duration
to obtain a reliable prediction from both methods, for each fed back subcarrier. We
collect the vectors representing the skew Hermitian tangents, obtained by liftPk,l

(Uk,l ),
for vector quantization (recall that Cayley Exp. map has skew Hermitian matrices as
images (Section 1.3), which form a vector space). This is done to get 10,000 indepen-
dent predictions for each subcarrier that give the same number of independent vectors
per subcarrier in the collection. We then apply k-means (k = 64) algorithm over the
collection obtained by stacking 10,000 vectors obtained per subcarrier, to get a 6 bit base
codebook, T B for TPk,l

St(NT, NR), for both the hopping based and time based predictive
quantization schemes. Since k-means is applied over the stacked collection of vectors for
each subcarrier, the codebook obtained is independent of choice of subcarrier. The main
motive of performing this step is to ensure codewords representing isotropic directions in
the tangent space. Hence we transmit (32 × 6 = 192) and (8 × 6 = 48) bits per frame
when N = 1024 and 64 respectively for time based predictive quantization scheme. For
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hopping predictive quantization scheme, the feedback is (31.5×6 = 189) and (7.5×6 = 45)
bits per frame when N = 1024 and 64, since the feedback alternates between total 32, 31
and 8, 7 subcarriers fed back, between two frames. These feedback bits indicate the op-
timum tangent which the transmitter selects to refine the estimated precoder predictions
for appropriate fed back subcarriers.

Estimate chordal metric, d[t] results

From Fig. 1.8 we observe that with time, d[t] for the hopping predictive quantization
scheme becomes much lower than that of the time based approach. We observed that
after a certain time instant, the chordal metric on the Stiefel Manifold bumps up, which
was observed even in [4]. Hence, we propose a scheme in which the receiver resets the
prediction algorithm and re-initializes with the 6 bit Lloyd codebook obtained for St(4, 2)
when such a detrimental situation is observed. Note that, even for initialization, we
communicate 192 (or 189) and 48 (or 45) bits per frame only, depending whether N is 1024
(or 64, respectively). This allows the algorithm to reset upon facing unpredictable heavy
interference, since we do not assume a very heavy feedback requirement for initialization.

Figure 1.8: Chordal metric error (d[t]) vs. time for a channel realization, Vehicular channel model, 1024
subcarriers. Here, “Joint Time-Frequency Predictive Quantization” refers to the situation where the fed
back points are alternated, as shown in Fig. 1.3 and interpolation performed via method discussed in Sec-
tion 1.4.3. The “Temporal Predictive Quantization [4]” strategy uses the predictive quantization method
in [4], with feedback points as shown in Fig. 1.2, and interpolation performed via Cayley exponential
lifting map as discussed in Section 1.3.

Results for hopping scenario

Figs. 1.9a, 1.9b, shows BER performance (uncoded QPSK, MMSE equalization, 1000
symbols per subcarrier), averaged over 10 independent channel evolutions, for Vehicular,
N = 1024 and Pedestrian, N = 64 respectively. In each evolution, the algorithm was run
till a sudden jump in quantization error was observed (as in [4]) by the receiver. Upon
encountering the jump, the receiver resets the algorithm by feeding back fresh estimates
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using the independent 6 bit codebook. The jump occurs roughly after around 100 channel
evolutions, and hence the necesarry feedback of 1 bit required to communicate this drastic
event is minimal amortized over time.

For the Vehicular channel model, by performing predictive quantization on our hop-
ping strategy, and doing joint time-frequency interpolation, we have matched the ideal
32 subcarrier feedback BER performance. The ideal 32 subcarrier feedback corresponds
to the case in which the transmitter is assumed to know the ideal unquantized precoding
matrices for 32 equally spaced subcarriers (33k) in each OFDM frame and interpolates
over frequency by Cayley interpolation (1.4) to find precoders at non fed back subcarri-
ers, labeled “32 subcarriers ideal feedback + Cayley interpolation” in Fig. 1.9a. The 63
subcarrier ideal feedback BER curve, labeled “63 subcarriers ideal feedback + Cayley in-
terpolation”, serves as a lower bound on the achievable BER performance for our hopping
strategy. This scenario indicates that the transmitter has knowledge of ideal unquantized
precoders at 32 equally spaced indices along with 31 middle indices of the regular inter-
vals between them, in each OFDM frame, and performs interpolation as before. Hence,
matching that curve would mean that we have exploited the temporal and frequency cor-
relations perfectly, which expains why the BER of our scheme is lower bounded by this
scenario. We also observe a ∼2 dB gain at 10−4 BER, ∼ 5 dB gain at 10−5 BER, when
compared to the time based approach. One potential reason for improvements in the BER
curve can be cited to the chordal metric chosen. Although the chosen metric is not a dis-
tance metric on the Stiefel manifold, it is a distance metric on the perumtation invairant
flag manifold, onto which the optimal precoders for MMSE receiver reside [6]. Although
we work with Stiefel manifold (which has higher dimensions than the flag manifold), we
minimize the distance metric of the flag manifold, and hence we obtain such substantial
improvement in the BER curve.

For the Pedestrian channel model, by performing predictive quantization via both the
approaches, labeled “Indep. time-freq, [4] + Cayley interpolation (8×6 bits)”, “Joint time-
freq pred. qt. & interpolation (7.5× 6 bits)” in Fig. 1.9b, we get huge improvements over
the non-predictive independent quantization case, labeled “Cayley Exp. map (8×6 bits)”.
Observe that doubling the number of subcarriers fed back in the ideal cases does not offer
much improvement, labeled “8/15 subcarriers ideal feedback + Cayley interpolation”.
This can be explained by the fact that the Pedestrian channel is strongly correlated along
frequency, and thus doubling the number of subcarriers fed back does not add much to
the information content. Therefore, the time domain information is more valuable in
the Pedestrian channel model, and this explains why, both the predictive quantization
schemes are able to improve the BER performance significantly. Even though the time
domain information is more valuable, our proposed scheme, which combines both time
and frequency information, still improves upon the existing approach by around 4 dB
at 10−4 BER. However, we are not able to match the ideal performance curves, more
particularly at higher SNRs, as was the case in Vehicular channel models. This can be
explained due to occurrence of the error floors observed in the quantized curves at about
10−6 BER.

We obtain the achievable rates in Figs. 1.9c, 1.9d by averaging similarly, and the sin-
gular values are sent and interpolated as described in Section 1.5.1. The results obtained
are similar for both the channel models (i.e. Vehicular and Pedestrian) considered. When
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(a) BER results, Vehicular channel model (b) BER results, Pedestrian channel model

(c) Achievable rate results, Vehicular channel
model

(d) Achievable rate results, Pedestrian channel
model

Figure 1.9: Simulation Results for the proposed predictive quantization and joint time-frequency based
interpolation scheme: Here, the Joint time-frequency based scheme refers to the situation where the
fed back points are alternated, as shown in Fig. 1.3 and interpolation is performed using the method
discussed in Section 1.4.3. The Independent time-frequency based scheme uses the temporal predictive
quantization [4], with feedback points as shown in Fig. 1.2, and interpolation performed via Cayley
exponential lifting map as discussed in Section 1.3. The y-axis for Fig. (c), (d) denotes the average
instantantaneous achievable rate as a percentage of the maximum achievable rate possible given full CSI
at the transmitter.
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the channel varies faster, the time-based prediction tracks the channel more efficiently due
to higher temporal information. For slower channels, utilizing the frequency correlation
is more valuable, since the temporal variation is less significant. The crossover is at about
fdTs = 10−2 for both the channel models considered, which is generally a fast varying
channel; we expect the hopping approach to be better in most realistic mobility scenarios.

Observe that the achievable rates at 0 dB SNR by both our proposed joint time-
frequency predictive quantization scheme (Fig. 1.3, 1.5) and the independent time-
frequency scheme (Fig. 1.2, [4]+[19]) comes to be ≈ 90%. This is significantly higher
than the rate obtained via independent quantization and Cayley interpolation (≈ 70%,
Fig. 1.7) and illustrates the huge benefits which both the predictive quantization schemes
offer over the independent quantization schemes.

1.6 Conclusions

In this paper, we have proposed a new method for interpolating precoder matrices on the
Stiefel manifold for wireless MIMO systems, and empirically showed that it offers a better
performance than traditional geodesic interpolation. We then proposed a hopping strat-
egy for the location of fed back subcarriers, coupled with a predictive quantization scheme
and a joint time-frequency interpolation technique to utilize the time and frequency cor-
relations optimally. The proposed predictive quantization scheme improves quantization
performance in subsequent OFDM frames and brings the BER and achievable rates close
to that obtained using theoretical unquantized precoders. When compared to past ap-
proaches that utilize the same amount of feedback, our approach allows the Eb/N0 require-
ment for a the BER to be reduced by ∼5 dB. Simultaneously, the achievable rate is also
significantly boosted due to the reduced errors in precoder quantization and interpolation.
Future work would involve a study with various antenna configurations and generalizing
the results to the multiuser-MIMO scenario. Another interesting line of future work is
to generalise the proposed algorithm to the permutation invariant flag manifold, which
can potentially bring about even more improvements in the BER results, by avoiding the
dimensional penalty we pay by operating on the higher dimensional Stiefel manifold.

1.7 Appendix

1.7.1 The Cayley Exponential Lifting and Retraction Pairs

Given X,Y ∈ St(Nt, Nr ), [19] defines the lifting map Exp−1X (Y) : St(Nt, Nr ) → TXSt(Nt, Nr )
by

Exp−1X (Y) =
[
C −BH

B 0
¯

]

where C = 2(XH
u + YH

u )−1sk(YH
u Xu + XH

l Yl )(Xu + Yu)−1 is a Nr × Nr skew hermitian

matrix and B = (Yl − Xl )(Xu + Yu)−1 is a (Nt − Nr ) × Nr matrix where, X = [Xu,Xl ]
H ,

Y = [Yu,Yl ]
H , with Xu,Yu ∈ C

Nr×Nr and Xl,Yl ∈ C
Nr×(Nt−Nr ), provided that Xu + Yu is

nonsingular, sk(M) = 1
2 (MH −M). Note that Exp−1X (Y) maps matrices residing in the

Stiefel manifold to a Nt × Nt skew Hermitian matrices.
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The corresponding retraction map ExpX(T) : TXSt(Nt, Nr ) → St(Nt, Nr ), with X ∈
St(Nt, Nr ), T ∈ TX St(Nt, Nr ) is defined as ExpX(T) = Cay(T)X, where Cay(T) = (INt +

T)(INt −T)−1 is the Cayley conformal map. Hence the unique geodesic from X ∈ St(Nt, Nr )
to Y ∈ St(Nt, Nr ), denoted by ΓY

X
(t) = ExpX(tExp−1X (Y)).

Let Ũi1,t, Ũi2,t ∈ St(Nt, Nr ) be the quantized precoding matrices corresponding to the
i1, i2 subcarriers at the t−th time index. Then, the interpolated Ũi,t with i1 < i < i2 is
given by,

Ũi,t = Γ
Ũi2,t

Ũi1,t

(
i − i1
i2 − i1

)
= ExpŨi1,t

(
i − i1
i2 − i1

Exp−1
Ũi1,t

(Ũi2,t )
)

1.7.2 Detailed steps to derive ∆i,t

Recall that, Ti,t, Fi,t are matrices such that T
j,s
i,t ≈ Fi,t∆ f +Ti,t∆t, where ∆ f ,∆t ∈ R are small

steps in the time and frequency axes respectively. We have ∆ f = j − i and ∆t = s − t, i.e.
the signed frequency/time separation between boxes ( j, t) and (i, t). With the neigbour
precoders for past p samples (nbrsi,t (p)) defined in (1.5), we get the following optimization
framework to estimate Ti,t, Fi,t ,

Fi,t,Ti,t ← argminFi,t,Ti,t

∑
( j,s)∈nbrsi,t (p)

| |(Fi,t ( j − i) + Ti,t (s − t) − T
j,s
i,t ) | |2F (1.12)

Now, define objective function O(Ti,t, Fi,t ) =
∑

( j,s)∈nbrsi,t (p)

| |(Fi,t ( j−i)+Ti,t (s−t)−T
j,s
i,t ) | |2F .

We use the identities ∂
∂X (Tr(AXB)) = AHBH and ∂

∂X

(
Tr(AXHB)

)
= BA, where A,X,B

are matrices such that the products AXB and AXHB exist. Also, recall |M|F = Tr(MMH )
for any matrix M. For the sake of brevity, we write

∑
( j,s)∈nbrsi,t (p)

as
∑
( j,s)

in the subsequent

discussion. Taking the partial derivative of O(Ti,t, Fi,t ) with respect to Ti,t, Fi,t we get the
following equations,

∂

∂Fi,t
O(Ti,t, Fi,t ) =

∑
( j,s)

(
( j − i)2Fi,t + ( j − i)(s − t)Ti,t − ( j − i)T j,s

i,t

)
∂

∂Ti,t
O(Ti,t, Fi,t ) =

∑
( j,s)

(
( j − i)(s − t)Fi,t + (s − t)2Ti,t − (s − t)T j,s

i,t

)
Setting ∂

∂Ti,t
O(Ti,t, Fi,t ), ∂

∂Fi,t
O(Ti,t, Fi,t ) to null matrix gives us the following linear

equation for estimation of the optimum Fi,t,Ti,t (Observe that Ti,t, Fi,t will come out of the
summation since they do not depend on j, s):

[
Fi,t
Ti,t

]
= ∆−1i,t



Σ j,s ( j − i)T j,s
i,t

Σ j,s (s − t)T j,s
i,t



∆i,t =

[
Σ j,s ( j − i)2 Σ j,s ( j − i)(s − t)

Σ j,s ( j − i)(s − t) Σ j,s (s − t)2

]

This completes the detailed proof of ∆i,t
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Chapter 2

Predictive Quantization for
MIMO-OFDM SVD Precoders using
Reservoir Computing Framework*

Chapter Abstract

Precoding matrices obtained from SVD of the MIMO channel matrix (which is esti-
mated at the receiver) can be utilized at the transmitter for optimum power allocation
and lower BER transmissions. A key step enabling this improved performance is the
feedback of these precoders to the transmitter from the receiver. Since the bit budget
for such Channel State Information (CSI) feedback is limited, these precoders need to be
quantized effectively using just a few bits. For a NT × NR MIMO system (N{T/R}: Number
of Transmit/Receive Antennas), this amounts to quantizing a NT × NR complex-valued
matrix. This task is aided by the presence of an underlying manifold structure and tem-
poral/frequency correlations in the precoders. Predictive quantization methods exploit
the available correlations in the previously estimated precoders to predict new precoders,
and then quantize just the additional information required to obtain the actual precoder
from the predicted value, yielding a refined estimate. In this work, we introduce a reser-
voir computing framework for predictive quantization by exploiting temporal correlations.
Past methods have primarily exploited the nonlinear geometry of the underlying manifold
structure for precoder prediction. Here, this non-linear relationship is captured using the
dynamical reservoir state as part of the online training process of the reservoir. Simu-
lations reveal that this approach produces reduced quantization error, which results in
lower BER as well as improved achievable rates when compared to earlier work.

*This work has been submitted in IEEE Globecom 2019
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2.1 Introduction

In MIMO wireless systems, precoding matrices are used for transformation of an NS-
dimensional (NS ≤ min(NT, NR)) information vector onto an NT -dimensional transmit
vector that corresponds to the signal emanating from the NT antennas of the transmit-
ter. The precoding matrix used to achieve the channel capacity using optimal power
allocation is obtained via the SVD of the MIMO channel matrix [2]. The MIMO channel
matrix is estimated at the receiver, and the transmitter has no a-priori knowledge of the
same. Therefore, to obtain the said benefits of SVD precoders at the transmitter, the
receiver needs to quantize and feed back the precoders it obtains from the SVD of MIMO
channel matrix. To respect the bit budget imposed by limited feedback CSI schemes, the
quantization needs to be performed using very few bits. Given the high dimensionality
of precoders (which form a NT × NR complex-valued matrix, viz. 2NT NR real numbers),
effective quantization with just a few bits poses a significant challenge.

Past work has used two inherent properties of the precoders to enable effective quan-
tization with just a few bits. First, the precoders are not actually 2NT NR dimensional
entities, but have an underlying manifold structure that allows to work with lower dimen-
sions, when performing operations over the manifold directly. Second, these precoders
are correlated in both time and frequency. Utilizing these correlations permit the use of
predictive quantization algorithms, which enable improvement of the quantization error
with time. This improvement is obtained because utilizing the correlations for estimation
of the new precoder, allows for quantization of just the small extra information needed on
top of the past fed back precoders, as compared to the new precoder information in the
entirety. Exploiting frequency correlations permits the use of interpolation algorithms,
which reduce the feedback overhead in a single OFDM frame, by feeding back CSI only for
certain subcarriers, and interpolating over the others. Combining the two inherent prop-
erties (viz. manifold structure and correlations), requires generalization of various well
known linear algorithms for prediction, quantization and interpolation, to the manifold
structure. This is done by exploiting the underlying non-linear differential geometry of the
manifold. Relevant past work in this direction has been presented in [1, 3–5, 8, 10, 12, 23].

Manifold based approaches for predictive quantization have provided significant per-
formance benefits, given that they work with the effective lower dimensions while framing
the manifold operations to predict and quantize. However, these approaches are non-
trivial, since they require specific operations over the non-linear manifold differential ge-
ometry. In this paper, we aim to capture the above non-linear relations using a reservoir
computing based predictive quantizer to exploit the temporal correlations effectively. The
proposed framework offers a simple solution to the predictive quantization problem, which
brings about ease of implementation, along with improved performance, when compared
to [4], which proposed a manifold based method of predictive quantization by exploiting
temporal correlations as well.

Reservoir computing is a computational framework designed for sequential data pro-
cessing. Its design is inspired from several frameworks of Recurrent Neural Networks [24],
including Liquid State Machines [25] and Echo State Networks [26, 27]. The reservoir
computing framework represents the non-linear relationships in the data via the higher
dimensional dynamical reservoir state vector, which is transformed (using matrices, re-
ferred to as ‘couplers’) to the lower dimensional input/output vectors Reservoir computing
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has been successfully used to solve problems like handwritten digit image recognition [25],
climate prediction [27] and spoken digit recognition [28]. Reservoir computing frame-
works have also been applied to solve problems in the domain of wireless communications
[24, 26, 29]. [24] used reservoir computing framework to harness channel non-linearities
for improved channel equalization. [26, 29] utilized the framework for OFDM symbol
detection while accounting for channel and power amplifier non-linearities. In our work,
we utilize a reservoir computing framework similar to one presented in [27] to capture
the underlying nonlinear relations between previously obtained quantized precoders, in
order to predict the precoder at next time instant. This becomes analogous to time series
prediction algorithms, for which the reservoir computing framework has been cited to
work effectively [26].

2.2 System Model

We consider a point-to-point NT × NR MIMO-OFDM wireless system. In this discussion,
we assume that NT > NR and Ns = NR. The available bandwidth is divided into N
subcarriers, so that, individually for each subcarrier, the channel can be assumed to
be flat fading. Consistent with notation in [1, 4], the data stream received on the i-th
subcarrier, t-th time instant (or the t-th OFDM frame) is denoted by:

yi,t = HH
i,tŨi,txi,t + wi,t (2.1)

Here, Ũi,t ∈ C
NT×NR is the quantized estimate of precoding matrix, yi,t ∈ C

NR×1 is the
received data stream, xi,t ∈ C

NT×1 denotes the transmitted signal, Hi,t ∈ C
NT×NR denotes

the MIMO channel matrix and wi,t denotes the i.i.d. complex Gaussian noise with wi,t ∼

NC(0, N0INR ), N0 being the noise variance. For this work, we assume that HH
i,t is estimated

exactly, with zero error at the receiver.
If an infinite bit budget is available for precoder quantization, the transmitter can

directly use the matrices obtained from SVD of HH
i,t as the precoder Ũi,t . That is, if

SVD(Hi,t ) = Ui,t, Σi,t,Vi,t , then Ũi,t = Ui,t . Notice that matrices Ui,t reside on the Stiefel
manifold St(NT, NR), since the columns of Ui,t form a set of NR orthogonal vectors in NT
dimensions [1, 4]. Given practical limitations, only limited feedback is available from the
receiver, and the objective is to estimate Ui,t , via Ũi,t , using the available feedback bits.
Independent quantization algorithms analogous to the Lloyd codebook algorithm have
been studied for quantizing St(NT, NR) [18]. However, this approach treats precoders that
are close to each other in time/frequency as independent, since it does not exploit any
temporal/spectral correlations for quantization.

Predictive quantization algorithms [1, 4] can be utilized to reduce the quantization
error by utilizing the available correlations. We now discuss the basic mathematical
model that is central to predictive quantization algorithms for precoding matrices. Sup-
pose that we predict the current precoding matrix based on the past p observed pre-
coding matrices. For this, assume that Ũi,t−p, Ũi,t−p+1, . . . , Ũi,t−2, Ũi,t−1 have been fed
back and available at the transmitter. By using a prediction algorithm and by exploit-
ing time correlations among precoders at time instances t − p, t − p + 1, . . . , t − 2, t −
1, the transmitter can obtain a prediction (viz. a coarse estimate) of Ui,t , given by
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Pi,t = fP(Ũi,t−p, Ũi,t−p+1, . . . , Ũi,t−2, Ũi,t−1), where fP : St(NT, NR) × . . . {p − times} . . . ×
St(NT, NR) → St(NT, NR) is a prediction function. Now, since the transmitter already pos-
sesses a coarse estimate Pi,t of Ui,t , the receiver just quantizes the local space of St(NT, NR)
nearby Pi,t , instead of the complete St(NT, NR). The receiver feeds back this quantized
information, enabling a refined estimate of Ui,t , given by Ũi,t at the transmitter. That
is, the transmitter utilizes a quantization function qP : St(NT, NR) × N → St(NT, NR), to
obtain Ũi,t ← qP(Pi,t, fbi,t ), where fbi,t ∈ {1, 2 . . . 2

B } is the feedback from the receiver for
precoder at i-th subcarrier and t-th time instant, considering bit budget of B bits. In
[1, 4, 5], fbi,t denotes the codeword index for the codebook obtained for quantizing the
local tangent space at Pi,t .

When using the predictive quantization scheme, the quantization is performed on a
smaller subspace when compared to the entire manifold in case of independent quanti-
zation. Therefore, the quantization error is substantially lower as well. However, inde-
pendent quantization algorithms are important for smart initialization (instead of a cold
start) of the predictive quantization strategies. Observe that predictive quantization al-
gorithms for SVD precoders are typically the higher dimensional analogues of well known
approaches to reduce quantization error using linear prediction codes (LPCs) and Delta
PCM. In both LPCs and Delta PCM, quantization error can be reduced substantially
using a linear predictor and quantizing the scalar difference between the predicted and
observed value (innovation). Analogous to this, for St(NT, NR), quantization error is re-
duced by quantizing a subspace around the predicted value that is much smaller than the
entire manifold.

In our work, we propose a reservoir computing based prediction framework that pre-
dicts the new precoders by utilizing temporal correlations that are captured from past
observed precoders (via fP). We reuse the qP algorithm from [1, 4]. However, by incor-
porating the qP in the reservoir framework, fP and qP get coupled in the sense that fP is
optimized via online training of the reservoir by minimizing the norm difference between
Pi,t = fP(·), and Ũi,t = qP( fP(·), fbi,t ). Previous work [1, 4] has considered fP and qP to be
uncoupled with each other. A detailed discussion on the reservoir computing based model
for fP and qP is presented in Section 2.3. The proposed reservoir computing scheme is
evaluated against the temporal predictive quantization scheme in [4], and the simulation
results are discussed in Section 2.4.

2.3 Reservoir Framework for Predictive Quantization

2.3.1 Vectorizing matrices in the Stiefel Manifold

The reservoir computing framework has inputs and outputs as real vectors, and thus,
it is necessary to convert the precoding matrices to vectors. A precoding matrix M ∈

St(NT, NR) is a CNT×NR matrix with the property MHM = 1NR . For brevity, we call such
a matrix M a ‘semi-unitary’ matrix. A näıve method to vectorize a CNT×NR semi-unitary
matrix would be to take all its NT NR complex numbers individually and stack them onto
a 2NT NR dimensional real vector. However, a more efficient approach would be to use the
MHM = 1NR property, which implies that each vector that represents the columns of M is
orthogonal to the other columns. For the first column, we take its NT complex numbers
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and stack them onto a 2NT vector. For the second column, we take only the first NT − 1
complex numbers and concatenate, since the last number can be determined by utilizing
orthogonality with the first column. For the third column, we take only the first NT − 2
complex numbers, and so on. Therefore, we vectorize a CNT×NR semi-unitary matrix into
a 2(NT ) + 2(NT − 1) + . . . + 2(NT − NR + 1) = 2NT NR − N2

R + NR dimensional vector.
Observe here that we incur a dimensional penalty upon vectorizing semi-unitary matri-

ces. St(NT, NR) is a 2NT NR−N2
R dimensional manifold, whereas the proposed vectorization

yields a 2NT NR−N2
R+NR dimensional vector representation. This corresponds to an over-

head of NR dimensions, since we have not exploited the fact that each of the NR column
vectors is a unit norm vector as well. It looks as if utilizing the norm 1 property, we
could just take NT − 1 complex numbers when vectorizing the first column, instead of NT .
However, this would lead to non-unique representations, since there could then be infinite
possible values that the lone missing complex number can take, so that the vector has unit
norm. Hence, we vectorize a semi-unitary CNT×NR M into 2NT NR − N2

R + NR dimensional
vector, denoted as m.

2.3.2 Forward Prediction fP

The vector representation of semi-unitary matrices allows to proceed with our discussion
on reservoir computing framework. Consider the reservoir computing framework depicted
in Fig. 2.1

The input to the reservoir i that corresponds to subcarrier i is ũi,t−1 (vectorized rep-
resentation of Ũi,t−1), with dimensions Din = 2NT NR − N2

R + NR. Using a randomly ini-

tialized Dresv × Din input coupler matrix Win
i , the Din dimensional input is mapped to

a Dresv(>> Din) dimensional vector, where Dresv is the dimension of the reservoir state
vector ri,t . ri,t is initialized with Dresv zeros, and is updated via the following equation:

ri,t = tanh(Airi,t−1 +Win
i ũi,t−1) (2.2)

where Ai is the adjacency matrix that captures the reservoir dynamics, and tanh is ap-
plied element wise. Typical choices for Ai have been Erdos-Renyi graphs with an upper
bounded maximum eigenvalue [26, 27]. The output of the reservoir is pi,t , a vectorized
representation of Pi,t , which denotes the predicted precoder at i-th subcarrier, t-th time
instant. Therefore, the output of the reservoir is also a Din dimensional vector (viz.
Dout = Din). The output pi,t is obtained using a matrix transformation of the reservoir
state ri,t with the Dout × Drev output coupler matrix Wout

i,t−1,

pi,t =Wout
i,t−1ri,t (2.3)

This completes the forward prediction to obtain Pi,t using only the past observed Ui,t−1
(i.e. p = 1, Section 2.2). That is,

Pi,t = fP(Ũi,t−1) =Wout
i,t−1tanh(Airi,t−1 +Win

i ũi,t−1)1 (2.4)

However, a complete discussion of the framework involves a backward pass for reservoir
training, which estimates optimum Wout

i,t . This would follow subsequently after qP(·) is
described.

1For brevity, pi,t and Pi,t are treated to be one and the same
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Figure 2.1: Forward Prediction (Green): Both the transmitter and receiver utilize identical reservoirs
and quantized precoder estimate at t−1 (i.e. ũi,t−1, top left of fig.) to obtain Pi,t via (2.4). The transmitter
estimates the quantized precoder at t (i.e. ũi,t , top right of fig.) using receiver feedback fbi,t via qP (2.6).
Feedback Estimation (Cyan): The Receiver estimates the ideal fbi,t using the exact precoders Ui,t

via (2.5). The transmitter observes only the feedback fbi,t Backward Pass (Blue): Wout
i,t is updated

via (2.11) for optimizing Oi,t . This is done at both transmitter and receiver to ensure identical evolution
of the reservoirs

2.3.3 Quantization function qP

We now describe the quantization function qP(Pi,t, fbi,t ), which is similar to the schemes
used in [1, 4, 5]. Central to the quantization algorithm is the fact that tangent spaces
local to a point in manifold are vector spaces. Given two points X and Y in St(NT, NR),
a lifting operation TY

X = lift(X,Y), lift : St(NT, NR) × St(NT, NR) → TX St(NT, NR)
yields a tangent from X to Y , denoted as TY

X ∈ TX St(NT, NR), where TX St(NT, NR) is
the local tangent space at X. A corresponding retraction operation Y = retract(X,TY

X ),
retract : St(NT, NR)×TX St(NT, NR) → St(NT, NR) gives back the manifold point obtained
by traversing in the tangent direction given by the second argument (TY

X ). In this work,
the chosen lifting-retraction pairs are the Cayley exponentials, discussed in [1, 19]. The
Cayley exponential lifting operation maps two points in St(NT, NR), to a NT × NT skew
Hermitian matrix that represents the tangent from first point to the other.

The quantization algorithm exploits the vector space property of the tangent space
and quantizes the local tangent space at the predicted precoder Pi,t , viz TPi,t

St(NT, NR).
The codebook for TPi,t

St(NT, NR) corresponds to a collection of B − 1 codewords that
represent the different directions (tangents) in TPi,t

St(NT, NR). This codebook is sub-

sequently referred to as the base codebook (baseC) for the quantization function. The
feedback from the receiver indicates the codeword corresponding to the optimum tangent
in the baseC, which the transmitter can choose to get closest (in terms of chordal distance
metric, ds (X,Y) for X,Y ∈ St(NT, NR) detailed in [1, 4]) to the actual value Ui,t . With
the optimum direction chosen, the next step is to determine how much to move in that
particular chosen direction, viz. the length of the chosen tangent direction.

For this, we adopt the strategy in [4], which controls the magnitude of tangent steps,
by having two codebooks TCp ,T

C
m of different spreads sp, sm, but the same 2B−1 base vectors
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in the baseC, i.e. TC
{p/m} = s{p/m}baseC (i.e. All codewords ∈ baseC multiplied by s{p/m}

individually). The two codebooks are concatenated to form a 2B length codebook, TC.
The receiver finds the optimal index fbi,t ∈ {1, 2, . . . , 2

B } in TC by comparing the chordal
distance metric (ds), of each codeword to the actual precoder Ui,t obtained from the SVD
of the channel matrix, using (2.5). The receiver then feeds back fbi,t to the transmitter
using B bits. The transmitter uses the fed back fbi,t and (2.6) to calculate Ũi,t ,

fbi,t ← argmini∈{1,2,...,2B }

(
ds

(
Ui,t, retract(Pi,t,TC[i])

))
(2.5)

Ũi,t = qP(Pi,t, fbi,t ) = retract(Pi,t,TC[fbi,t ]) (2.6)

fbi,t is also used to update the spread of the codebooks TCp ,T
C
m . Depending on whether

fbi,t ≥ 2B−1, i.e. whether the optimum codeword is in TCp or TCm , the scale parameter s[k],
which in turn controls values of sp, sm, is updated as,

sp = g
min(s[k−1]+1,0), sm = g

s[k−1]−1

s[k] =



min(s[k − 1] + 1, 0), for fbi,t ∈ TCp
s[k − 1] − 1, otherwise

with s[0] = 0. Intuitively, the algorithm reduces/increases the spread of the codebook till
the reduction/increase of spread is no longer beneficial, i.e. the optimum codeword lies in
the higher/lower spread codebook instead. The scheme used to obtain baseC is similar to
the one presented in [1], which performs a k-means (k = 2B−1) clustering on a collection
of tangents to obtain an isotropic collection of 2B−1 tangent codewords. This completes
the discussion on the quantization function qP to obtain Ũi,t = qP(Pi,t, fbi,t ) from Pi,t, fbi,t .

2.3.4 Reservoir Training Procedure, the backward pass

Having described the technicalities of fP, qP, we now describe the training process for the
reservoir, which couples fP with qP. Recall that, to obtain Ũi,t from Ũi,t−1, we have

Ũi,t = qP(Pi,t, fbi,t ) = qP( fP(Ũi,t−1), fbi,t ) (2.7)

The key idea for reservoir training is that, as the predicted matrix Pi,t (the coarse esti-
mate) gets closer to Ũi,t (the refined estimate), the receiver has to quantize even smaller
subspaces, and can thus provide a more refined estimate from the feedback fbi,t . Hence, we
train the reservoir output coupler such that the following objective function is optimized:

Oi,t =

t∑
s=1

1

λt−s | |pi,t − ũi,t | |
2 =

t∑
s=1

1

λt−s | |W
out
i,t ri,t − ũi,t | |

2 (2.8)

Here λ > 1 is the history parameter, and | | · | | is L2 norm. We wish to perform the
following optimization in order to find the optimum Wout

i,t from the available estimates
till time t:

Wout
i,t ← argminWout

i,t
(Oi,t =

t∑
s=1

1

λt−s | |W
out
i,t ri,t − ũi,t | |

2) (2.9)
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Computing the gradient
∂Oi,t
∂Wout

i,t

and setting it to null yields,

Wout
i,t =

∑t
s=1

1
λt−s outer(ũi,s, ri,s)∑t
s=1

1
λt−s | |ri,s | |

2
(2.10)

where outer(x, y) is the outer product between Nx dimensional vector x and Ny dimen-
sional vector y to yield a Nx × Ny matrix. Let

∑t
s=1

1
λt−s outer(ũi,s, ri,s) be numi,t and∑t

s=1
1
λt−s | |ri,s | |

2 be deni,t , with Wout
i,t =

numi,t

deni,t
. Observe that

Wout
i,t =

numi,t−1

λ + outer(ũi,t, ri,t )
deni,t−1

λ + | |ri,t | |
2

(2.11)

(2.11) makes training of the reservoir easy to implement with low complexity. We only
need to store a matrix numi,t−1, and a number deni,t−1. Then, using the current reservoir
state ri,t and ũi,t obtained from (2.2), (2.7) respectively, optimum Wout

i,t can be estimated.

The optimum Wout
i,t can then be used to obtain P̃i,t+1, and so on. This completes the

discussion of the proposed reservoir computing framework illustrated in Fig. 2.1.
To conclude this section, we summarize and highlight the novel aspects of the proposed

framework. The first key advantage of the proposed approach over the past work [1, 4, 5]
is that here the prediction function, fP is coupled with the quantization function, qP. Past
work for predictive quantization has largely kept fP and qP uncoupled in the sense that,
the obtained precoder is just composite function of fP and qP, applied to the previous p
precoder estimates i.e. qP( fP(·)) (Section 2.2). In the proposed framework, fP changes
with time due to the update equation of Wout

i,t (2.11). Recall that Wout
i,t update equation

is obtained from optimizing (2.8), which minimizes the norm error between the prediction
pi,t (the coarse estimate) and the quantized value ũi,t (the refined estimate). Hence,
backward pass ensures that the coarse estimate provided by fP gets more refined with
time, since optimizing Wout

i,t to minimize Oi,t brings the predicted estimates pi,s≤t closer to

the quantized estimates ũi,s≤t . The updated Wout
i,t is then used to obtain Pi,t+1, which is

likely to be closer to Ũi,t+1, than Pi,t was to Ũi,t , due to optimization of Oi,t . This enables
qP to quantize even smaller subspaces, since the coarse estimate itself has improved, which
in turn brings about lower quantization error, and thus improved performance.
Another advantage of the proposed scheme is the ease of training of the reservoir, entailed
by (2.11). Reservoir computing, thus proposes an easy to train data centric scheme, which
is not typical for data centric ML based schemes. Also, by storing just one matrix numi,t
and a number deni,t , we capture the entire history of the obtained quantized precoders,
with past values weighted by λ in Oi,t (2.8). This is a departure from previous schemes
[1, 4, 5] which store the past p precoders in a p sized cyclic buffer (p also has to be
pre-decided).

2.4 Simulation Results

2.4.1 Simulation setting considered

The simulations have been performed for the IEEE Pedestrian-A channel, with NT = 4,
NR = 2. The channel matrices Hi,t are generated using Jake’s model via IT++ library
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Figure 2.2: The transmitter obtains feedback for {9k, k ∈ {0, 1, . . . , 7} subcarriers, and uses Ũi,t−1, along
with fP, qP (2.7) to obtain Ũi,t , illustrated in the figure via cyan arrows. For each time instant, the
transmitter uses the Cayley method (2.12) to interpolate Ũi,t at i , {9k} non fed back subcarriers (green
arrows

through the python wrapper py-itpp [22]. We compare the results obtained by our frame-
work with [4], which presented a manifold geometry method to exploit temporal cor-
relations for predictive quantization. We keep p = 4 for the fP presented in [4]. The
quantization function qP is kept to be same, as described in [1, 4, 5] for both the ap-
proaches. Although in both our work and [4], only temporal correlations are exploited,
we compare the simulation results for the complete MIMO-OFDM setting (visually illus-
trated in Fig. 2) with N = 64 subcarriers. Channels are fed back for 8 evenly spaced
subcarriers indexed from 0, viz. {0, 9, . . . , 63} ({9k, k ∈ {0, 1, . . . , 7}}). Hence, the transmit-
ter obtains only fb{9k},t . For non fed back subcarriers i , 9k, 9n < i < 9(n+ 1), the Cayley
method [1] is used to interpolate Ũi,t , from available estimates, Ũ9n,t and Ũ9(n+1),t

Ũi,t = ExpŨ9n,t

(
(i/9 − n)Exp−1

Ũ9n,t

(
Ũ9(n+1),t

))
(2.12)

For a detailed treatment on Exp,Exp−1, refer [19].
A 6 bit codebook generated using the Lloyd codebook algorithm for the Stiefel Man-

ifold presented in [18] is used for initial feedback (Ũ{9k},0) and differential quantization
(i.e. Pi,t = Ũi,t−1) is used for 10 time instances to provide the initial training data for the
reservoir and to overcome the initial transient response of the reservoir (also discussed in
[26]). A 5 bit base codebook is used for the quantization function qP and is generated
according to the method presented in Section 2.3.3, similar to [1]. Hence, both initial-
ization and subsequent feedback, fbi,t can be encoded using 6 bits (i.e. B = 6 Section
2.2). The bit budget per OFDM frame is thus 48 bits, for total 8 equally spaced fed back
subcarriers {9k, k ∈ {0, 1, . . . , 7}}.

For predicting channels at each of the 8 fed-back subcarriers, we consider 8 separate
reservoirs, each of them evolved separately, with i ∈ {9k, k ∈ {0, 1, . . . , 7}} in both the
forward pass prediction and quantization ( fP, qP) (2.7) and backward pass to update Wout

i,t
(2.10). Unlike [1], we do not exploit frequency correlations for predictive quantization,
and the 8 reservoirs for prediction of 8 fed-back subcarriers are kept independent of each
other. All these 8 reservoirs are initialized with Ai∈{9k} being an Erdos-Renÿı graph,

with probability of edge connections being 0.2, λ = 2, W
out/in
i∈{9k},0 initialized randomly,

Din = Dout = 14 (vectorized representation of 4 × 2 semi-unitary matrix, Section 2.3.1)
and Dresv = 60.
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Figure 2.3: Quantization error in terms of chordal distance to the actual precoder U{9k },t observed at the

receiver, from the quantized estimate Ũ{9k },t averaged over {9k} fed back subcarriers
(

viz.
Σi∈9kdS (Ũi, t,Ui, t )

8)
and 10 independent channel realizations (normalized Doppler fDTs = 10−4).

2.4.2 Quantization error, BER and Achievable Rate Results

To ensure that the simulation results hold in general for the chosen IEEE Pedestrian A
channel profile, we perform averaging over 10 independent channel realizations. Therefore,
the quantization error, BER and achievable rate results are averaged over 1000 channel
instances, with 100 channel evolutions of 10 independent channel realizations.

From Fig. 2.3 it is evident that the proposed framework is able to reduce the quan-
tization error below what was obtained from the existing temporal correlations based
predictive quantizer in [4]. In addition, the quantization error plot is much smoother as
well, which can be explained from the fact that the reservoir computing approach op-
timizes Oi,t , that captures the long term dynamics of the channel and hence, does not
face jittery variations. We simulate (uncoded QPSK) BER performance for all the 64
subcarriers’ precoders obtained after interpolation (Ũi,{9k},t) and quantization (Ũ{9k},t).
Observe from Fig. 2.4 that reservoir computing framework is able to achieve substantial
improvements in EbN0 levels at BER ≤ 10−4. Particularly, for BER = 10−5 we observe
around 5 dB improvement.
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Figure 2.4: BER results: Here, red curve is the most ideal case considering exact Ui,t for all 64 subcarriers,
at each time instant are available at the transmitter. The {green/yellow/blue} curves corresponds to the
case in which {U9k,t/Ũ9k,t from reservoir method/Ũ9k,t from [4]} is available for each time instant, and
non fed back precoders are interpolated via Cayley method. Observe that the proposed framework BER
curve provides significant improvement in EbN0 levels over [4] (normalized Doppler fDTs = 10−4).

We hypothesize that the key reason for the improved performance for both quanti-
zation error and BER in the reservoir computing approach, is the fact that fP, qP are
coupled via the backward pass framework (explained towards the end of Section 2.3.4).
Also, observe from Fig. 2.4 that the proposed framework BER curve (yellow) comes very
close to the ideal 8 feedback curve (green). This can be explained due to the fact that
the semi-unitary precoder basically rotates the data vector via its matrix transformation.
For QPSK, we get some reasonable error margin for this rotation, which becomes more
stringent as the simulated BER is reduced. Hence, we match the ideal curve for high
BER region, and for low BER region, as the margin of error reduces, the curves diverge.
For simulating the achievable rate, we quantize the sigma values (Σi,t from SVD of Hi,t)
using a 2 bit vector quantizer (k-means), and feed them back to the transmitter for
fed back subcarriers ({9k, k ∈ {0, 1, . . . , 7}}). For the non-fed back subcarriers, they are
interpolated via a simple convex combination interpolation method as in [1]. Observe
from Fig. 2.5 that the reservoir computing framework offers improvement in achievable
rate for f DTs = 10−4. Since the temporal variations for f DTs = 10−2, 10−1 are higher,
the reservoir computing framework has to learn a faster-varying function, and hence the
degradation in performance. However, it still matches the performance of the predictive
quantizer in [4] for f DTs = 10−2 and performs slightly better for f DTs = 10−1.
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Figure 2.5: The results are presented as a percentage of the ideal achievable rate obtained when the
transmitter has the accurate (unquantized) and non-interpolated estimates of Ui,t for each subcarrier
and each time instant.

2.5 Conclusions and Future Work

In this paper, we have presented a reservoir computing framework for predictive quantiza-
tion of SVD precoders by exploiting temporal correlations. The simulations reveal signifi-
cant improvement in quantization error, BER, and achievable rate for IEEE Pedestrian-A
channel model with normalized Doppler 10−4. The novelty that enables these improve-
ments lies in the training method for the reservoir framework, which refines the predicted
coarse estimates as the reservoir evolves. The simulation results indicate that the pro-
posed framework would be able to communicate at significantly lower power levels for
the same BER, as illustrated in Fig. 2.4. Note that these results have been obtained by
exploiting just the temporal correlations for predictive quantization, and can potentially
improve if temporal-frequency correlations are exploited jointly. This motivates further
study into the reservoir framework, and a detailed analysis of impact on performance
caused by choice of different reservoir parameters like A, tanh(·), and Dresv.
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Chapter 3

Backpropagation over the unitary
group

Chapter Abstract

Backpropagation over scalar variables with scalar weights and activation functions is a
widely studied algorithm and forms the backbone of many neural network architectures.
To enable the search for the optimum interpolation function for the unitary precoding
matrices in MIMO OFDM setting, we formulate the backpropagation algorithm over the
unitary group, since here instead of learning functions of scalar variables, we needed to
learn functions of unitary matrices. One thing centrally different in our approach from
vanilla backpropagation schemes is that, the nodes, input/output and the weights are all
unitary matrices, and not scalars. Due to this unitary structure in the problem considered,
the algebra of gradients, convex combination schemes and standard activation functions
needs to be tweaked. Since the unitary group is a lie group, i.e. it has both a group
operation (multiplication) and a smooth manifold structure, indeed the above tweaks can
be performed and backpropagation can be generalized to the unitary group. The following
work summarizes the proposed backpropagation for unitary group.
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3.1 Feed Forward Network

3.1.1 Architecture Considered

The unitary precoders Ui corresponding to subcarrier i is obtained by taking the SVD of
NT × NR channel matrix Hi, viz. Hi = UiΣiVi (when NT , NR, full SVD should be taken
instead of a compact SVD).

Figure 3.1: The proposed following NN architecture to learn the optimal interpolating f’n by observing
precoder data arising from the channel for U9k,k∈{0,1,...7} → Uk,k∈{0,1,...63}

The architecture comprises of two types of layers. The first two layers resemble convo-
lutional layers, and are motivated from the fact that the precoding matrix at a particular
subcarrier is more correlated to it’s neighbor subcarriers than other subcarriers. The last
layer which maps the 8 matrices to 64 output matrices is a naive ‘one to many layer’
which multiplies the weight with the input to give the output.
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Figure 3.2: Convex Combination schemes in the network

3.1.2 Convex Combination schemes

Since the group operation on unitary manifold is multiplicative operation rather than ad-
dition, the convex combination scheme had to be altered to preserve the unitary structure
of the nodes. The weights Wi are also unitary matrices.

3.1.3 Unitary ReLu function

The standard ReLu activation function was modified in the way given below to work on
unitary manifolds:-

ReLUunitar y (k+, k−)(Uin) =



expm(k+logm(Uin)); logm(Uin)) positive definite

expm(k−logm(Uin)); otherwise

Figure 3.3: Unitary ReLU activation function: Pictorial Representation

C-2



• Unitary matrix acting upon a vector is analogous to the vector being rotated. Also,
taking logm of Unitary matrix results in a skew hermitian matrix, which is analogous
to jθ in e jθ

• Hence, if the rotation is in positive sense, the output of activation function is
expm(k+logm(Uin)), where expm is matrix exponential, logm is matrix logarithm;

• If the rotation is in negative sense, the output of activation function is identity
matrix (since the group operation being used is multiplication)

• A leaky ReLU can also be devised with a small slope (k−, k− = 0 for standard ReLU)
if rotation is in negative sense, instead of the standard identity matrix

3.1.4 Concluding the Feed-Forward part

We now conclude the feed forward strategy for the tweaked backprop scheme. The network
weights are initialized as random unitary matrices for the architecture in Fig. 3.1. Using
Convex combination schemes in Section 3.1.2 the inputs to neurons are calculated. Each
hidden layer neuron utilizes the Unitary ReLU activation function as discussed in Section
3.1.3. This is repeated till we get to the final layer. The final layer does not employ an
activation function and the neuron output is simply neuron input itself.

3.2 Backpropagation & Gradient Calculations

3.2.1 Matrix Differentiation scheme

A roadblock towards the gradient calculations is the matrix by matrix derivative. The
matrix by matrix derivative of p × q matrix F with respect to a m × n matrix X has the
following form,

∂F

∂X
=



∂F
∂X1,1

· · · ∂F
∂X1,n

...
. . .

...
∂F

∂Xm,1
· · · ∂F

∂Xm,n



(3.1)

WLOG, consider that we perform backpropagation over 4 × 4 unitary matrices. Hence,
both the weights and inputs/outputs are 4 × 4 as well. Thus, the gradient calculations
will involve differentiating a 4× 4 matrix with another 4× 4 matrix, and the same will be
used to update the weights, which are 4 × 4 themselves. However, the matrix by matrix
derivative is 16 × 16 if we go with the traditional matrix by matrix derivative (3.1).

To solve this problem, we consider ∂F
∂Xi,j

as the 4 × 4 matrix which indicates change in

the i, j-th element of X. Since we want the change in every element being considered, the
required matrix would become

∑
i, j

∂F
∂Xi,j

. This is motivated by two observations:-

• Firstly, considering that we were backpropagating over just the element i,j. Then
the required gradient would be ∂F

∂Xi,j
. Since we use the gradient to update the weight
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matrix, subtracting this gradient to perform gradient descent would mean to make
the i, j-th element more close to what is expected in the output.

• Secondly, if we consider a more basic first principles approach towards dealing with
the problem, we would be do the following,

∂(BAC)

∂A
=

B(A + h ∗ 11)C − BAC
h

where 11 is all ones matrix. This would reflect change in each element and give a
4*4 matrix as well.

• When doing the derivative of
∂(BAC)

∂A in both the ways suggested above, we get the
same derivative, which is B11C

Hence, if we want back propagation over the whole matrix, summing over the entire entries
would make sense, since the sum of individual i, j-th gradients will capture the gradient
matrix representing the changes which should be done to get each i, j-th element modified
appropriately to reduce the error function chosen. This can also be motivated by doing
the things from first principle as suggested in the second approach.

3.2.2 Final Layer Gradient Calculations

The error function being used is the sum of squares of the frobenious norm difference
between the output layer and the actual data. The gradient of frobenious norm squared
with respect to the outputs is calculated in the way stated below.

∂E

∂σL
j

=
∂ | |σL

j
− oj | |

2)

∂σL
j

=
∂Tr((σL

j
− oj)(σLH

j
− oH

j
))

∂σL
j

=
∂Tr(I + I − σL

j
oH

j
− ojσ

LH

j
)

∂σL
j

= −(
∂Tr(σL

j
oH

j
)

∂σL
j

+
∂Tr(ojσ

LH

j
)

∂σL
j

)

= −2 ∗ o j

(3.2)

Here E represents the error function, σL
j represents the j-th final layer output o j represents

the j-th expected output the network is being trained against, We use the identities
∂Tr(AXB)

∂X = AT BT and ∂Tr(AXTB)
∂X = BA to simplify the second last equation.

This calculation sets up the gradient descent scheme. Since, this gradient is with
respect to outputs of layer L, to update the weights between layer L-1 and layer L, we
need the gradient wrt to the weights, for which chain rule is used.
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∂E

∂wij
= −

∂E

∂σL
j

∂σL
j

∂wij

= −2 ∗ o j ∗
∂(wij ∗X−1)

∂wij

= −2 ∗ o j ∗ 11 ∗ X−1

(3.3)

where X−1 is the appropriate penultimate output corresponding to i,j. (Recall the final
layer scheme, which doesn’t use any activation function). Once gradients wrt weights are
calculated, the weights are updated by using projected gradient descent:-

wi j = closest unitar y (wi j − η
∂E

∂wij
) (3.4)

where closest unitary(.) maps the input to the closest matrix in the unitary group.

The gradient wrt to the output (− ∂E
∂σL

j

) is backpropagated to enable calculation of gradi-

ents of the hidden layers.

3.2.3 Hidden Layer Gradient Calculations

.

1. Using the gradient wrt final layer output and chain rule, gradient wrt penum layer
output is calculated by summing over the connected next layer nodes

∂E

∂σL−1
j

=
∑

k∈connected nodes

∂E

∂sumL
k

∂sumL
k

∂σL−1
j

where sumL
k is the input to kth neuron of layer L such that jth node of layer L-1 is

connected to kth node of layer L. Recall from section 3.1.2 that we have an expression
for sumL

k in terms of its connected nodes output σL−1
j and their respective weights.

2. Since all layers apart from final layer use the Unitary ReLU activation function,
the gradient wrt output is converted to gradient wrt input by differentiating the
Unitary ReLU. The gradient wrt ‘layer input’ is then backpropagated for calculation
of previous layer gradients similar to what was done with gradient of the final layer
weights.

∂E

∂sumL−1
j

=
∂E

∂σL−1
j

∂σL−1
j

∂sumL−1
j

where
∂σL−1

j

∂sumL−1
j

is just the derivative of the unitary ReLU since σL−1
j = ReLUunitar y (sumL−1

j )
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3. To get gradient wrt weights of the previous layers, each of the input is differentiated
one by one wrt weights and then multiplied with gradient wrt input to get gradient
wrt weights, which is then used for Projected Gradient descent to update the weights

∂E

∂wij
=

∂σL−1
j

∂sumL−1
j

∂sumL−1
j

∂wij

where i denotes the index of nodes in layer L-2 connected to jth node of layer L-1.
The weights are updated similar to last layer weights using the projected gradient
scheme (3.4).

Steps 1,2,3 are repeated till the first layer (the input layer is reached) and all the
weights are updated using (3.4).

3.3 Regularization Procedure

Recall the ‘unitary matrix rotates a vector’ analogy discussed in 3.1.3. This analogy
also helps us to formulate a regularization scheme. Regularization is done by imposing a
penalty upon deviation of weights from identity matrix, as it is not good for the weights
to rotate vectors by a lot and hence overfit.
Thus, the term expm(λlogm(U)) is multiplied to the gradient for regularization. If the
matrix U is close to identity, the regularization term will also be close to identity and not
affect the gradient by much. Hence the modified update rule becomes :-

wi j = closest unitar y (wi j − η
∂E

∂wij
expm(λlogm(wi j )))
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