m Microsoft

Microsoft Machine Learning -

& Data Science Summit
September 26 — 27 | Atlanta, GA

Session code

m Microsoft

Optinr

Perfor

Ta

Rashim Gupta
Principal Program Manager, Azure Big Data

1ZIr

nce N Azure H

g Apache Hive

DInsignt

Session Objectives and Takeaways

Session Objectives

Introduce Microsoft Azure HDInsight and Apache Hive
Discuss various optimizations
Coming up in HDInsight

Key takeaways

Optimized Hive is fast
Be able to choose right optimizations
You can design an Enterprise Data Warehouse using Hive

Microsoft Hadoop Stack
Hadoop Distributions running in Azure VMs
Analytics [| o |2 = R R cloudera

Storage Local (HDFS) or Cloud (Azure Blob/Azure Data Lake Store)

Azure HDInsight

Hadoop and Spark
as a Service on Azure

Fully-managed Hadoop and Spark for the cloud

100% Open Source Hortonworks data platform
Clusters up and running in minutes

Supported by Microsoft with industry’s best SLA
Familiar Bl tools for analysis

Open source notebooks for interactive data science

63% lower TCO than deploying Hadoop on-premise*

*IDC study “The Business Value and TCO Advantage of Apache Hadoop in the Cloud with Microsoft Azure

HDInsight”

Apache Hive: Scalable Data Warehousing

2015

2006 2012

Hive incubated at Hive introduces

Facebook

ODBC/JDBC drivers
released

2010 2016

Hive introduces Tez,
vectorization, ORC

In-memory through

Top level Apache
. A LLAP

project

Hive: Enabling Enterprise Data Warehouse

ETL * Reporting e Ad-Hoc e Continuous * Multidimensional
Reporting * Bl Tools: Tableau, f§ * Drill-Down Ingestion from Analytics
Data Mining Microstrategy, * Bl Tools: Tableau, Operational e MDX Tools

Deep Analytics Cognos Excel DBMS e Excel
e Slowly Changing

(7))
[
RS
o
()
=
o
o
<

Interactive Sub-Second ACID / OLAP / Cube

Fatgen Sl sQL sQL MERGE

Capabilities

Comprehensive MDX
SQL:2011 Coverage

Petabyte Scale Advanced Cost-Based JDBC / ODBC

Processing Optimizer
Apache Tez: Scalable

SEE|E-OLE SR Distributed Processing

Platform Core SQL Engine Connectivity

Advanced Security

Creating an HDInsight cluster

~ New > Data+ Analytics

New Data + Analytics

New

Resource groups
MARKETPLACE FEATURED APPS
All resources

Virtual Machines Power Bl Embedded

Recent rj
Web + Mobile D llll

Services
a Data + Storage

Virtual machines (classic) Cognitive Services APls

Data + Analytics @ (preview)
'-.," |f1_ -

Virtual machines Internet of Things build h pe

SCL datebases Networking Data Catalog

Cloud services (classic) Media + CDN fli

Security Center Hybrid Integration

e Security + Identity > HDInsight
? Subscriptions : Microsoft's cloud-based Big Data
' service. Apache Hadoop and other

Developer Services , .
popular Big Data sclutions.

Browse >

Management

Creating an HDInsight cluster

New HDInsight Cl... Cluster Type configuration

Learn about HDInsight and cluster versions.

* Cluster Name

Cluster Type @ Operating System Version
mydemo123 v - i b Ry

v indows Hadoop 2.7.1 (HDI134)
azurehdinsight.net

Cluster Tier (more info)

e REvED

* Subscription

= Administration = Administration
* Select Cluster Type @ E— Manage, monitor, connect E— Manage, monitor, connect
A Scalabilit Scalabilit
Standard Hadoop on Linux (3'4) 4 Or‘l-demang node scaling 4 Or‘l-demang node scaling
= 99.9% = 99.9%
Applications @ 5 Uptime SLA Uptime SLA
Fﬂ Automatic patching Fﬂ Automatic patching
. , BN Microsoft R Server
Credentials S n for HDInsight
Configured
+ 0.00 + 0.02
* Data Source @ > USD/CORE/HOUR USD/CORE/HOUR
mydemo123 (West US)
* Pricing 3

D3 v2/D3 v2

Creating an HDInsight cluster

New HDInsight Cl... Cluster Type configuration

Learn about HDInsight and cluster versions.

* Cluster Name

Cluster Type @ Operating System Version
mydemo123 v - i b Ry

v indows Hadoop 2.7.1 (HDI134)
azurehdinsight.net

Cluster Tier (more info)

e REvED

* Subscription

= Administration = Administration
* Select Cluster Type @ E— Manage, monitor, connect E— Manage, monitor, connect
A Scalabilit Scalabilit
Standard Hadoop on Linux (3'4) 4 Or‘l-demang node scaling 4 Or‘l-demang node scaling
= 99.9% = 99.9%
Applications @ 5 Uptime SLA Uptime SLA
Fﬂ Automatic patching Fﬂ Automatic patching
. , BN Microsoft R Server
Credentials S n for HDInsight
Configured
+ 0.00 + 0.02
* Data Source @ > USD/CORE/HOUR USD/CORE/HOUR
mydemo123 (West US)
* Pricing 3

D3 v2/D3 v2

Cluster Dashboard

mydemo123 > Cluster Dashboard

Y mydemo123 (& Cluster Dash...

HDInsight Cluster

$} Settings (' Dashboard %® Secure Shell M Delete

Essentials ~ AN 0
Resource group Cluster Type
mydemo123 ¢7 Standard Hadoop on Linux (HDI 3.4.1000.0}
Status URL
Running https://mydemo123.azurehdinsight.net
Location Learn more
West US Documentation .
Subscription name Getting Started HDInsight Cluster
Free Trial ¢&F Quickstart Dashboard
Subscription 1D Head Nodes, Worker Nodes
412385f7-2725-4544-a5af-c4180ee0bf82 D3 v2 (x2), D3 v2 (x1)
All settings =» Add a section &+
Quick Links Add tiles &
4
Cluster o }

& Dashboard Ambari Views Scale Cluster
Usage Add tiles &

Cores in West US for subscription

Applications

' o Y

Cluster Dashboard (Powered by Apache Ambari

® HDFS Metrics Heatmaps Config History

© MapReduce2 Metric Actions Last 1 hour +

@ YARN
O Tez HDFS Disk Usage DataNodes Live HDFS Links Memory Usage MNetwork Usage
@ Hive | 4 Active NameNode
0 Pig 99 1 /1 Standby NameNode Fesen | 488.2 KB
1 DataNodes

0 Sgoop

More... v
@ Oozie .
© ZooKeeper

CPU Usage Cluster Load NameNode Heap NameNode RPC MNameNode CPU WIO

@ Ambari Metrics

O Slider f“

50% ‘2

>
13% 0.06 ms

Actions =

NameNode Uptime ResourceManager ResourceManager Uptime NodeManagers Live YARN Memory

22.0 min 159? 23.5 min 1/1 0%

YARN Links

ResourceManager

1 NodeManagers

More... =

INn the Cluster Dashboard: Hive

2> Ambari mydemo123 - - Dashboard Services Hosts Alerts Admin

® HDFS Summary Configs Service Actions ~

@ MapReduce?

N
& YARN Summary o alerts

Hive Metastore & Started
Hive Metastore & Started

HiveServer? & Started

HiveServer? & Started

0 Sgoop

WebHCat Server & Started
@ Qozie

WebHCat Server & Started
@ ZooKeeper

HCat Client 1 HCat Client Installed

© Ambari Metrics Hive Clients 3 Hive Clients Installed

0 Slider

Actions =

In the Cluster Dashboard: Hive Configuration

Py Ambari mydemo123 - - Dashboard Services Hosts Alerts Admin

® HDFS Summii Service Actions ~
@ MapReduce?2
© YARN Group Default(6) ~ Manage Config Groups Filter... w2
0 Tez
E admin admin
28 minutes ago 28 minutes ago
— HDP-2.4 HDP-2.4
O Pig
& Sqoop V2 « admin authored on Thu, Jul 21, 2016 13:19
@ Qozie
Settings Advanced
@ ZooKeeper g
& Ambari Metrics
O Slider ACID Transactions Interactive Query Security
Actions - AGCID Transactions Default query queues Choose Authorization
default queue = MNone =
Run Compactor Start Tez session at Initialization Run as end user instead of Hive user
Number of threads used by Compactor Session per queue HiveServer2 Authentication

“ n MNone -

Cluster Dashboard: Advanced Configuration

'3 Ambari mydemoi23 - - Dashboard Services Hosts Alerts Admin
® HDFS Summary Configs Service Actions ~
@ MapReduce2
® YARN Group Default(6) ~ Manage Config Groups Filter... v
0 Tez
m admin admin
Hive 26 minutes ago 26 minutes ago
HDP-2.4 HDP-2.4
0 Pig
S Sqoop s - ~dmin authored on Thu, Jul 21, 2016 13:19
@ Oozie
& ZooKseper Settifgs Advanced

@ Ambari Metrics
¥ Hive Metastore

0 Slider
Actions ~ Hive Metastore hosts hnO-
mydemo.xngnxmdsnsOexhcmm4mo1ga5zd.dx.internal.cloudapp.net M a ny Of t h ea d Van Ced
and 1 other . . .
e 8 SRS Dt options we will discuss are
Existing MySQL Database S et h ere

) Existing PostgreSQL Database
(") Existing Oracle Database
") Existing SQL Anywhere Database

Database Host emn18boglr.database.windows.net

Database Name hive

Bringing it all together

Common
patterns

Cluster shape: Dedicated cluster
Job pattern: Fire and forget
Typical job: Full table scan, large joins

Ad-Hoc / Exploratory

Cluster Shape: Shared cluster
Job pattern: Short running jobs
Typical job: Ad-hoc over refined data

Problems that
customer face

How do | run my jobs fast?

What tools do | have to just submit and
forget?

What file formats should | use?

How do | effectively share my cluster?
How do | optimize my output data for final
consumption?

How do | connect Bl tools to my cluster?

Optimizations

Partitioning

Cost based optimizations

Large Joins: Increase Tez container size
Use Map join/Sort-merge when possible
Tweak reducers if necessary

ORC file

Use ADLS for large jobs

Increase container release timeouts

Use bzip2 for compression

Use ORC

Choose different cluster than batch jobs
Decrease session startup time

Prewarm containers

HDInsight today: Query Execution Architecture

SDK, PowerShell

JDBC, ODBC, Visual Stuldio, Hue, Ambari

Bl Clients [

1
I

C

adoop
uster

mN Azyre SQL

\

(Metastore)

AM AM AM AM
I Execution Engine (MapReduce, Tez)
I YARN
I Azure Azure Azure Azure Azure Azure
VM VM VM S VM VM VM

Cloud
Storage

(WASB/ADLS)

Optimizations across Hive Layers

Scenario

Job submission

Execution Engine

Storage Formats

Filesystem

Implementation

Templeton/HiveServer2

Hive + Tez

ORC, JSON, Compression

HDFS, WASB, ADLS

Hadoop 1. Optimized for long running jobs
Built for Batch

Job is submitted

Job acquires resources
Processing happens

All resources go away

Problems

Cluster machinery takes 60+s to start
No opportunity for Java JIT compilation

Zooming In: Job Submission

Scenario

Job submission
Execution Engine

Storage Formats

Filesystem

Implementation

Templeton/HiveServer2

Hive + Tez

ORC, JSON, Compression

HDFS, WASB, ADLS

Hadoop 2, YARN and Tez Changes

Custom "‘App Masters” Job

Job can launch a long-lived App Master

App Master can launch and retain containers
indefinitely

« Pro: Avoids launch times
« Con: Can create multi-tenancy problems

Tez containers are designed to be multi-

purpose and re-usable. In principle they can
run forever.

Container@Container

HiveServer? Gives “Connection Pooling”

Connecting
HiveServer2 allows ODBC/JDBC connection
Mandatory for Bl tools HiveServer?

HiveServer/

Launches 1 or more App Masters on YARN
queues

App Masters launch Tez containers for SQL
Containers are released slowly and gradually
One SQL query per AM

Container@Container

Improving query startup performance

Decrease session startup time

Initial query can take up to 30 seconds to create a Tez session
Ok for long running jobs, not ok for Bl queries

Enable container reuse

First query usually takes longer to run since containers need to be reserved
Short lived jobs, like Bl or Oozie may take longer to run
Enable container prewarming before job starts

Keep containers around longer

After query finishes, do not return the containers right away

Improving query startup performance

Configurations:

hive.server2.tez.initialize.default.sessions
hive.server2.tez.default.queues
hive.server2.tez.sessions.per.default.queue

__ Maintain persistent resources

hive.prewarm.enabled __ Pre-warm resources
hive.prewarm.numcontainers

—

} Disallow complete shutdown (optional)

tez.am.session.min.held-containers

Benefits:

Avoid 15+s startup times for SQL queries
Higher throughput

Job submission Optimizations: Summary

Setting Recommended HDI Default Note
hive.server2.tez.initialize.default.sessions true Not Enabled I/E
hive.server2.tez.default.queues "default” or a custom Not Enabled I/E

queue
hive.server2.tez.sessions.per.default.queue = max concurrent queries Not Enabled I/E
hive.prewarm.enabled true Not Enabled |
hive.prewarm.numcontainers 1-5 Not Enabled |
tez.am.session.min.held-containers 1-5 Not Enabled |

| = Use for Interactive, E = Use for Multi-Stage ETL
“Not Enabled” settings not appropriate to enable for pure batch.

/ooming In: Execution Engine

Scenario

Job submission

Execution Engine

Storage Formats

Filesystem

Implementation

Templeton/HiveServer2

Hive + Tez

ORC, JSON, Compression

HDFS, WASB, ADLS

Container Size and Heap Size

Containers
The unit of work in Tez YARN Container
Run within a Java process
Exist within a Java Heap
Some fixed buffers

All within a YARN container

Java Process

NOteS Sort Buffer Hash Tables
Java garbage collection will cause process size
to exceed “maximum” for short intervals.

Need to account for this or risk container kills.

Join Optimizations

How Join works in Hive

Mappers read input; emit join key, value pair to intermediate file
Hadoop sorts and merges these pairs in shuffle stage
Shuffle stage = expensive

Join Types In Hive

Choosing right Join based on data can significantly improve perf
Types of Joins:

Shuffle Join

Map Join

Sort Merge Bucket Join

Join Optimizations

Join Hive settings Comments
Type

Shuffle « Default choice Reads from part of one of the No specific Hive Works
Join * Always works tables setting needed everytime
» Buckets and sorts on Join key
» Sends one bucket to each reduce

* Join is done on the Reduce side

Map Onetablecanfitin <« Reads small table into memory hive.auto.convert Very fast,
Join memory hash table Jjoin=true; but limited.
« Streams through part of the big file
 Joins each record from hash table
» Joins will be performed by the
mapper alone

Sort If both tables are: Each process: hive.auto.convert Very
Merge » Sorted the same » Reads a bucket from each table sortmerge.join= efficient
Bucket + Bucketed the same ¢ Processes the row with the lowest true
* Joining on the value
sorted/bucketed

column

Demo T
Tuning Hive's
noconditionaltasksize -

Demo 1: Tuning noconditionalTaskSize

set hive.auto.convert.join.noconditionaltask.size = 1;

SELECT 100.00 * sum(CASE WHEN p_type LIKE 'PROMO%' THEN 1 extendedprice * (1 -

1 discount) ELSE © END) / sum(1l_extendedprice * (1 - 1 discount)) AS promo_revenue
FROM lineitem ,part WHERE 1 partkey = p partkey AND 1 shipdate >= '1995-08-01"' AND
1 shipdate < '1995-09-01';

set hive.auto.convert.join.noconditionaltask.size = 500000000;

SELECT 100.00 * sum(CASE WHEN p_type LIKE 'PROMO%' THEN 1 extendedprice * (1 -

1 discount) ELSE © END) / sum(1l_extendedprice * (1 - 1 discount)) AS promo_revenue
FROM lineitem ,part WHERE 1 partkey = p partkey AND 1 shipdate >= '1995-08-01"' AND
1 shipdate < '1995-09-01';

The Map Join Optimization

Example:

SELECT * from big_table, small_table where big_table.x = small_table.y

Optimization:
Load small tables into memory in a hash table and distribute to all mappers.
Stream the hash table through the large table and perform the join.

Why / Why Not

Pro: Far more performant (10+x) than shuffle joins.
Con: Small tables must fit in RAM.
Con: If you estimate wrong, queries will fail.

How

Can turn it on/off using set hive.optimize.bucketmapjoin = true;
Can tune the size of table to cache by set hive.auto.convert.join.noconditionaltask

Demo 1: Tuning noconditionalTaskSize

set hive.auto.convert.join.noconditionaltask.size = 1;

SELECT 100.00 * sum(CASE WHEN p_type LIKE 'PROMO%' THEN 1 extendedprice * (1 -

1 discount) ELSE © END) / sum(1l_extendedprice * (1 - 1 discount)) AS promo_revenue
FROM lineitem ,part WHERE 1 partkey = p partkey AND 1 shipdate >= '1995-08-01"' AND
1 shipdate < '1995-09-01';

set hive.auto.convert.join.noconditionaltask.size = 500000000;

SELECT 100.00 * sum(CASE WHEN p_type LIKE 'PROMO%' THEN 1 extendedprice * (1 -

1 discount) ELSE © END) / sum(1l_extendedprice * (1 - 1 discount)) AS promo_revenue
FROM lineitem ,part WHERE 1 partkey = p partkey AND 1 shipdate >= '1995-08-01"' AND
1 shipdate < '1995-09-01';

Demo 2: Controlling # of mappers

set tez.grouping.min-size=524288000;
set tez.grouping.max-size=10737418240;
select count(*) from lineitem where 1 quantity > 4;

set tez.grouping.min-size=52428800;
set tez.grouping.max-size=1073741824;
select count(*) from lineitem where 1 quantity > 4;

set tez.grouping.min-size=5242880;
set tez.grouping.max-size=107374182;
select count(*) from lineitem where 1 quantity > 4;

Physical Planning: Mappers Parallelism

Sp|ItS . o Data to Process

Hadoop built around scale-out divide-and-

conquer processing. . . .
Step 1 is to split the data to process and farm it Split 1 Split 2 Split 3

out to processing resources (Tez containers)

Containers may need to process multiple splits.

Split Sizes
Split sizes are tunable
Adjusting split sizes may reduce latency

Controlling parallelism: # of Mappers

Data to Process

Reduce Split Size
Split Size = Latency
Reduce split size when latency is too high

Controlling split size in MR

MapReduce: decrease mapred.max.split.size

Controlling split size in Tez

Tez automatically chooses a split size
Its then adjusted based on (tez.grouping.min-
size, tez.grouping.max-size) settings

You can manually tune (tez.grouping.min-
size, tez.grouping.max-size)

Split 1 Split 2 Split 3

Demo 2: Controlling # of mappers

set tez.grouping.min-size=524288000;
set tez.grouping.max-size=10737418240;
select count(*) from lineitem where 1 quantity > 4;

set tez.grouping.min-size=52428800;
set tez.grouping.max-size=1073741824;
select count(*) from lineitem where 1 quantity > 4;

set tez.grouping.min-size=5242880;
set tez.grouping.max-size=107374182;
select count(*) from lineitem where 1 quantity > 4;

Demo 3: Controlling # of reducers

SELECT 1 returnflag ,1 linestatus ,sum(l_quantity) AS sum gty

,sum(l _extendedprice) AS sum_base price ,sum(l _extendedprice * (1 - 1 discount))
AS sum_disc_price ,sum(l _extendedprice * (1 - 1 discount) * (1 + 1 tax)) AS
sum_charge ,avg(l _quantity) AS avg gty ,avg(l _extendedprice) AS avg price
,avg(l discount) AS avg disc ,count(*) AS count_order FROM lineitem WHERE

1 shipdate <= '1998-09-16"' GROUP BY 1 returnflag ,l1 linestatus;

set hive.exec.reducers.bytes.per.reducer=10432;

SELECT 1 returnflag ,1 linestatus ,sum(l _quantity) AS sum_qty

,sum(1l _extendedprice) AS sum_base price ,sum(l_extendedprice * (1 - 1 discount))
AS sum _disc price ,sum(l _extendedprice * (1 - 1 discount) * (1 + 1 tax)) AS
sum_charge ,avg(l quantity) AS avg qty ,avg(l_extendedprice) AS avg price
,avg(l discount) AS avg disc ,count(*) AS count_order FROM lineitem WHERE

1 shipdate <= '1998-09-16"' GROUP BY 1 returnflag ,l1 linestatus;

Controlling Parallelism: # of reducers

Motivation

ORC and Snappy offer high performance
But, Hive may choose too few reducers
Usually reducers are the bottlenecks

Example

Original input data = 50GB
ORC w/ Snappy compression = 1GB

Hive estimates # of reducers as
of reducers = (#bytes input to mappers/hive.exec.reducers.bytes.per.reducer)

With default settings, this means 4 reducers

Tuning hive.exec.reducers.bytes.per.reducer

Tuning this value down will increase parallelism and may improve performance

Demo 3: Controlling # of reducers

SELECT 1 returnflag ,1 linestatus ,sum(l_quantity) AS sum gty

,sum(l _extendedprice) AS sum_base price ,sum(l _extendedprice * (1 - 1 discount))
AS sum_disc_price ,sum(l _extendedprice * (1 - 1 discount) * (1 + 1 tax)) AS
sum_charge ,avg(l _quantity) AS avg gty ,avg(l _extendedprice) AS avg price
,avg(l discount) AS avg disc ,count(*) AS count_order FROM lineitem WHERE

1 shipdate <= '1998-09-16"' GROUP BY 1 returnflag ,l1 linestatus;

set hive.exec.reducers.bytes.per.reducer=10432;

SELECT 1 returnflag ,1 linestatus ,sum(l _quantity) AS sum_qty

,sum(1l _extendedprice) AS sum_base price ,sum(l_extendedprice * (1 - 1 discount))
AS sum _disc price ,sum(l _extendedprice * (1 - 1 discount) * (1 + 1 tax)) AS
sum_charge ,avg(l quantity) AS avg qty ,avg(l_extendedprice) AS avg price
,avg(l discount) AS avg disc ,count(*) AS count_order FROM lineitem WHERE

1 shipdate <= '1998-09-16"' GROUP BY 1 returnflag ,l1 linestatus;

Cost-Based Optimization

Cost-Based Optimization in Hive

Based on Apache Calcite

Advanced re-writes

Join elimination

Bushy join transformation
Predicate factoring

More

Getting especially good with Hive 2
Requires stats to be built on tables

How to build stats:

Table Level

analyze table customer compute statistics;

Column Level

analyze table customer compute statistics for columns;
Advanced re-writes require column statistics.
For best results, do both.

Other optimizations

Vectorization

Increases performance 3x - 10x
Requires ORCFile
Coming soon: Text file support

Grace Hash Join

Prevents job failure when hash table sizes are mis-estimated
Performance penalty
Tradeoff between safety and speed

lez AM
lez AM

Used to launch and control Tez containers, and for some communication
Singleton

Lightweight

Required size of AM related to query complexity

Even highly complex queries usually OK with 4 GB Tez AM

Control with tez.am.resource.memory.mb

lez AM Timeout
lez AM

Controls all Tez resources

Will exit if idle for a while.

Control with tez.session.am.dag.submit.timeout.secs

Recommendation: Don't set higher than 1 hour. Zombie AMs are still possible. This is getting better.

Tez Container Min and Max Release Timeouts
Why?

You don’t want to exit because you want Tez containers hot and ready to go for performance.
You do want to exit because you want to be considerate to other people on the cluster.

Controls

tez.am.container.idle.release-timeout-min.millis, tez.am.container.idle.release-timeout-max.millis
Exit randomly somewhere in this interval

Important

|deally, Tez containers don't exit between waiting for Map to finish and starting Reduce.

Execution Engine Optimizations: Summary

Setting Recommended HDI Default
Choosing right Join option Bucket join/Sort Merge join Shuffle join
hive.auto.convertjoin.noconditionaltask.size ~ 1/3 of -Xmx value Auto-Tuned
tez.grouping.min-size Decrease for better latency 16777216
Increase for more throughput
tez.grouping.max-size Decrease for better latency 1073741824
Increase for more throughput
hive.exec.reducers.bytes.per.reducer Decrease if reducers are the bottleneck 256MB
hive.cbo.enable true but need to rewrite tables True
hive.vectorized.execution.enabled true true
hive.mapjoin.hybridgrace.hashtable true = safer, slower; false = faster False
tez.am.resource.memory.mb 4GB upper bound for most Auto-Tuned
tez.session.am.dag.submit.timeout.secs 300+ 300
tez.am.container.idle.release-timeout-min.millis 20000+ 10000
tez.am.container.idle.release-timeout-max.millis 40000+ 20000

/ooming In: Storage Formats

Scenario

Job submission

Execution Engine

Storage Formats

Filesystem

Implementation

Templeton/HiveServer2

Hive + Tez

ORC, JSON, Compression

HDFS, WASB, ADLS

Partitioning

Partitioning
In SQL-on-Hadoop subdirectories map to partitions.
Common strategy: one partition per day.

Importance:

Partitioning allows queries to avoid scanning the entire dataset.

Queries can explicitly filter out based on the partition key.
Hive also supports Dynamic Partition Pruning (“DPP") that permits partition elimination on-the-fly.

These approaches are almost always used.

Demo 4. Compression

CREATE EXTERNAL TABLE lineitem raw CREATE EXTERNAL TABLE lineitem gzip
(L_ORDERKEY BIGINT, L _PARTKEY BIGINT, (L_ORDERKEY BIGINT, L_PARTKEY BIGINT,

L _SUPPKEY BIGINT, L LINENUMBER INT, L _SUPPKEY BIGINT, L LINENUMBER INT,

L QUANTITY DOUBLE, L _EXTENDEDPRICE DOUBLE, L QUANTITY DOUBLE, L EXTENDEDPRICE DOUBLE,

L _DISCOUNT DOUBLE, L _TAX DOUBLE, L DISCOUNT DOUBLE, L _TAX DOUBLE,

L _RETURNFLAG STRING, L_LINESTATUS STRING, L _RETURNFLAG STRING, L_LINESTATUS STRING,

L _SHIPDATE STRING, L _COMMITDATE STRING, L SHIPDATE STRING, L _COMMITDATE STRING,

L _RECEIPTDATE STRING, L_SHIPINSTRUCT STRING, L RECEIPTDATE STRING, L_SHIPINSTRUCT STRING,
L _SHIPMODE STRING, L_COMMENT STRING) L _SHIPMODE STRING, L_COMMENT STRING)

ROW FORMAT DELIMITED FIELDS TERMINATED BY '|' ROW FORMAT DELIMITED FIELDS TERMINATED BY '|'
STORED AS TEXTFILE STORED AS TEXTFILE

LOCATION LOCATION
'wasb://rashimghivebatch@rashimgstorage.blob. 'wasb://rashimghivebatch@rashimgstorage.blob.c
core.windows.net/compression/raw/"'; ore.windows.net/compression/gzip/"';

select count(*) from lineitem raw where 1 quantity > 4;
select count(*) from lineitem gzip where 1 quantity > 4;

Compression

Tool Algorithm File Splittable
Extension

Gzip Gzip DEFLATE

Bzip2 Bzip2 Bzip2 .bz2 Yes

LZO Lzop LZO lzo Yes, if indexed

Snappy N/A Snappy Snappy No
Motivation

Hadoop jobs are usually 1/O bottlenecked
Compressing data can speed up I/O and network transfer

Key Takeaway

Splittable is important otherwise very few mappers will be created
If input data is text, bzip2 is best option since it is splittable

Demo 4. Compression

CREATE EXTERNAL TABLE lineitem raw CREATE EXTERNAL TABLE lineitem gzip
(L_ORDERKEY BIGINT, L _PARTKEY BIGINT, (L_ORDERKEY BIGINT, L_PARTKEY BIGINT,

L _SUPPKEY BIGINT, L LINENUMBER INT, L _SUPPKEY BIGINT, L LINENUMBER INT,

L QUANTITY DOUBLE, L _EXTENDEDPRICE DOUBLE, L QUANTITY DOUBLE, L EXTENDEDPRICE DOUBLE,

L _DISCOUNT DOUBLE, L _TAX DOUBLE, L DISCOUNT DOUBLE, L _TAX DOUBLE,

L _RETURNFLAG STRING, L_LINESTATUS STRING, L _RETURNFLAG STRING, L_LINESTATUS STRING,

L _SHIPDATE STRING, L _COMMITDATE STRING, L SHIPDATE STRING, L _COMMITDATE STRING,

L _RECEIPTDATE STRING, L_SHIPINSTRUCT STRING, L RECEIPTDATE STRING, L_SHIPINSTRUCT STRING,
L _SHIPMODE STRING, L_COMMENT STRING) L _SHIPMODE STRING, L_COMMENT STRING)

ROW FORMAT DELIMITED FIELDS TERMINATED BY '|' ROW FORMAT DELIMITED FIELDS TERMINATED BY '|'
STORED AS TEXTFILE STORED AS TEXTFILE

LOCATION LOCATION
'wasb://rashimghivebatch@rashimgstorage.blob. 'wasb://rashimghivebatch@rashimgstorage.blob.c
core.windows.net/compression/raw/"'; ore.windows.net/compression/gzip/"';

select count(*) from lineitem raw where 1 quantity > 4;
select count(*) from lineitem gzip where 1 quantity > 4;

Columnar Formats: Why?

Columnar Formats

All data for a column stored contiguously on disk.
So you can read a column really fast.
Just like SQL needs to do.

Pro:
Fast query
con:

You have to convert data into it
Only do that if you need to query it many times

Columnar Formats: Options
Options:

ORCFile:

Best in Hive

Allows vectorized execution (Fast)

Allows ACID (Insert / Update / Delete)
Parquet:

Fully supported

No vectorization or ACID

Common for mixed Hive/Spark workloads

Typical ORC Tunings

Compression Type

Zlib = Smallest

Snappy = Faster

None = An Option

CREATE TABLE t (..) STORED AS orc tblproperties ("orc.compress"="Zlib");

Stripe Size
Increase stripe size if you store large fields like blobs / XML documents, etc.
orc.stripe.size

Bloom Filters

Bloom filters accelerate highly selective queries
orc.bloom.filter.columns = csl of columns upon which we build bloom filters.

Using JSON with Hive
Why JSON?

After CSV, most popular input format is JSON
Multiple options to parse JSON
Perf depends on scenario

Options

Built in Hive UDFs
get_json_object UDF
get_json_tuple UDF

Custom SerDe
OpenX JSON SerDe

Using JSON with Hive
e i s e ot

MR J[J4 3l o Flexible as e Not performant e JSONs w/ no nesting Yes
‘schemaon e Cannot handle e When schema has to
read” arrays be decided at query

time

get_json_tuple e More e \Very clunky for e ForJSONs with one Yes
performant nested JSON level nesting
since JSON document as e No support for
object parsed code will have arrays
only once multiple Lateral

Views
OpenX SerDe o Very flexible e Does notcome as e For complex JSONs In progress
e Works with part of standard e This is the
complex HDI recommended
JSONs e User must build approach

and upload JAR

Storage Formats Optimizations: Summary

Setting Recommended HDI Default
Partitioning Always partition your data N/A
Compression Whenever possible use bzip2, LZO N/A
orc.compress ZLIB (space) or snappy (Speed) ZLIB
orc.stripe.size Only increase for large cells like documents 67,108,864
orc.bloom filter.columns Create bloom filters for columns N/A

commonly used in point lookups
JSON Use Hive built in SerDes for simple JSONSs; N/A
Use OpenX SerDe for complex JSONs

Zooming In: Filesystem

Scenario

Job submission
Execution Engine

Storage Formats

Filesystem

Implementation

Templeton/HiveServer2

Hive + Tez

ORC, JSON, Compression

HDFS, WASB, ADLS

Decoupling storage and compute

Difference between on-prem and Cloud Hadoop

Cloud Hadoop decouples storage with compute
Makes it easy to scale compute and storage separately

Cloud Storage Limits: Azure Storage bottleneck

¢

¢ /!
y N\

o« o . Partytion 1 Partition 2
Partitioning / ‘ \
Partitioned data on Year, Month, Day

Azure Blob Storage
Problem 2014-10.partd 2014-11.partd 2014-12.part0
Simultaneous Read/Write caused |/O

bottleneck

2014-10.part
2014-10.part2

2014-10.part3

2014-11.part
2014-11.part2

2014-11.part3

2014-12.part

2014-12.part2

2014-12.part3

Cloud Storage Limits: Azure Storage bottleneck

¢
¢ /]

Pa/t'éﬂ Partition 2 \
Azure Blob Azure Blob Azure Blob
Storage 1 Storage 2 Storage 3

Partitioning
Partitioned data on Year, Month, Day

Problem

Simultaneous Read/Write caused 1/0

bottleneck

2014-10.part0
2014-10.part

2014-10.part2

2014-10.part3

2014-11.part0
2014-11.part

2014-11.part2

2014-11.part3

2014-12.part0
2014-12.part

2014-12.part2

2014-12.part3

Cloud Storage Limits: Partitioning Azure Storage

¢

Solution A =)

Partitioned across multiple MZ Ptt\-”\\w‘él\
storage accounts

Azure Blob Azure Blob Azure Blob Azure Blob
Enche know[edge of | Storage 1 Storage 2 Storage 3 Storage 4
physical location into logical

partitioning key 2014-10.part0 2014-10.part1 2014-10.part2 2014-10.part3

2014-11.part0 2014-11.part1 2014-11.part2 2014-11.part3

2014-12.part0 2014-12.part1 2014-12.part2 2014-12.part3

Azure Data Lake Store

Improving Cloud Store Limits

No limits on file sizes

Analytics scale on demand

No code rewrites as you increase size of data stored
Optimized for massive throughput

Optimized for IOT with high volume of small writes

=

=

File System Optimizations: Summary

Setting Recommended HDI Default

File system to use as HDFS Azure Data Lake Store You decide at cluster time

Bringing it all together

Common
patterns

Cluster shape: Dedicated cluster
Job pattern: Fire and forget
Typical job: Full table scan, large joins

Ad-Hoc / Exploratory

Cluster Shape: Shared cluster
Job pattern: Short running jobs
Typical job: Ad-hoc over refined data

Problems that
customer face

How do | run my jobs fast?

What tools do | have to just submit and
forget?

What file formats should | use?

How do | effectively share my cluster?
How do | optimize my output data for final
consumption?

How do | connect Bl tools to my cluster?

Optimizations

Partitioning

Cost based optimizations

Large Joins: Increase Tez container size
Use Map join/Sort-merge when possible
Tweak reducers if necessary

ORC file

Use ADLS for large jobs

Increase container release timeouts

Use bzip2 for compression

Use ORC

Choose different cluster than batch jobs
Decrease session startup time

Prewarm containers

What is LLAP

Combines daemons and containers

Concurrent queries without specialized YARN queue setup
Multi-threaded execution of vectorized operator pipelines

Query Fragment

N I\/Iemory Caching LLAP Process

Uses Asynchronous 10 for efficient in-memory caching Cache

Cache Hit — output from Beeline

CUNSaU E L tI-l B HNo:
DECCDE TIME NS:
HDFS TIME NS: 176€
METADATZA CACHE HIT:
NUM DECODED BATCHES:
NUM VECTOR BATCH
ROWS EMITTED:
 ROWGROUPS:

O TIME NS5: 2328755548608

I command (queryId=hiv 201609271845922 2bT705bdd-T3

Demo 5: LLAP

create external table lineiteml@0gb orc
(L_ORDERKEY INT, L_PARTKEY INT,

L _SUPPKEY INT, L _LINENUMBER INT,

L QUANTITY DOUBLE, L EXTENDEDPRICE DOUBLE,

L DISCOUNT DOUBLE, L _TAX DOUBLE,

L _RETURNFLAG STRING, L_LINESTATUS STRING,

L SHIPDATE STRING, L _COMMITDATE STRING,

L RECEIPTDATE STRING, L _SHIPINSTRUCT STRING,
L _SHIPMODE STRING, L_COMMENT STRING)

STORED AS ORC

LOCATION 'wasb://llap3@rashimgstorage.blob.core.windows.net/TPCH100GB/lineitem orc/"';

beeline -u 'jdbc:hive2://localhost:10001/;transportMode=http' -n admin

select 1 returnflag, 1 linestatus, sum(l _quantity) as sum _qgqty, sum(l_extendedprice) as
sum_base_price, sum(l_extendedprice * (1 - 1 discount)) as sum _disc price,
sum(1l_extendedprice * (1 - 1 discount) * (1 + 1 tax)) as sum_charge, avg(l quantity) as
avg _qty, avg(l extendedprice) as avg price, avg(l discount) as avg disc, count(*) as
count_order from lineiteml100gb orc where 1 shipdate <= '9/16/1998 12:00:00 AM' group by
1 returnflag, 1 linestatus order by 1 returnflag, 1 linestatus;

Hive LLAP Performance

250

200

150

—
o
o

U
o

Query Time(s) (Lower is Better)

Hive 2 with LLAP averages 26x faster than Hive 1

1 2 3 4 5 6 7 8 9 10 11 1

ElSeries1T EMSeries2 —Series3

D DWW w NN DN U
O U1 O U1 O U1 O

Speedup (x Factor)

—
O U

Our Vision:
Hive as enterprise
Data Warenouse

HDInsight today: Query Execution Architecture

Bl Clients /

JDBC, ODBC, Visual Stuldio, Hue, Ambari

SDK, PowerShell

1
I

C

adoop
uster

mN Azyre SQL

\

(Metastore)

AM AM AM AM
I Execution Engine (MapReduce, Tez)
I YARN
I Azure Azure Azure Azure Azure Azure
VM VM VM S VM VM VM

Cloud
Storage

(WASB/ADLS)

HDInsight Vision: Query Execution Architecture
Interactive Hive

SDK, PowsrShell Hadoop cluster Jpsc opsc, visual wmbar' / cluster (neW)

| | [
[N
Azure SQL
I I ‘ (Metastore)
Execution Y, I
.- Engine

| | B Cloud
I [I Storage
I (WASB/ADLYS)

Session Objectives and Takeaways

Session Objectives

Introduce Microsoft Azure HDInsight and Apache Hive
Discuss various optimizations
Coming up in HDInsight

Key takeaways

Optimized Hive is fast
Be able to choose right optimizations
You can design an Enterprise Data Warehouse using Hive

m Microsoft

© Copyright Microsoft Corporation. All rights reserved.

