

Analytics

Storage

Microsoft Hadoop Stack

Azure HDInsight

R Server

Local (HDFS) or Cloud (Azure Blob/Azure Data Lake Store)

Azure HDInsight

Fully-managed Hadoop and Spark for the cloud

100% Open Source Hortonworks data platform

Clusters up and running in minutes

Supported by Microsoft with industry’s best SLA

Familiar BI tools for analysis

Open source notebooks for interactive data science

63% lower TCO than deploying Hadoop on-premise*

Hadoop and Spark
as a Service on Azure

*IDC study “The Business Value and TCO Advantage of Apache Hadoop in the Cloud with Microsoft Azure
HDInsight”

Hive: Enabling Enterprise Data Warehouse
C

ap
ab

ili
ti

es

Batch SQL OLAP / Cube
Interactive

SQL
Sub-Second

SQL
ACID /
MERGE

A
p

p
lic

at
io

n
s • ETL

• Reporting
• Data Mining
• Deep Analytics

• Multidimensional
Analytics

• MDX Tools
• Excel

• Reporting
• BI Tools: Tableau,

Microstrategy,
Cognos

• Ad-Hoc
• Drill-Down
• BI Tools: Tableau,

Excel

• Continuous
Ingestion from
Operational
DBMS

• Slowly Changing
Dimensions

Existing

Development

Emerging

Legend

C
o

re

Platform

Scale-Out Storage

Petabyte Scale
Processing

Core SQL Engine

Apache Tez: Scalable
Distributed Processing

Advanced Cost-Based
Optimizer

Connectivity

Advanced Security

JDBC / ODBC

Comprehensive
SQL:2011 Coverage

MDX

Bringing it all together
ETL Ad-Hoc / Exploratory

Common

patterns

Cluster shape: Dedicated cluster

Job pattern: Fire and forget

Typical job: Full table scan, large joins

Cluster Shape: Shared cluster

Job pattern: Short running jobs

Typical job: Ad-hoc over refined data

Problems that

customer face

How do I run my jobs fast?

What tools do I have to just submit and

forget?

What file formats should I use?

How do I effectively share my cluster?

How do I optimize my output data for final

consumption?

How do I connect BI tools to my cluster?

Optimizations

Partitioning

Cost based optimizations

Large Joins: Increase Tez container size

Use Map join/Sort-merge when possible

Tweak reducers if necessary

ORC file

Use ADLS for large jobs

Increase container release timeouts

Use bzip2 for compression

Use ORC

Choose different cluster than batch jobs

Decrease session startup time

Prewarm containers

…

Hadoop

clusterSDK, PowerShell
JDBC, ODBC, Visual Studio, Hue, Ambari

Optimizations across Hive Layers

Hadoop 1: Optimized for long running jobs

Job is submitted

Job acquires resources

Processing happens

All resources go away

Cluster machinery takes 60+s to start

No opportunity for Java JIT compilation

Zooming In: Job Submission

Hadoop 2, YARN and Tez Changes

Job can launch a long-lived App Master

App Master can launch and retain containers
indefinitely

• Pro: Avoids launch times

• Con: Can create multi-tenancy problems

Tez containers are designed to be multi-
purpose and re-usable. In principle they can
run forever.

HiveServer2 Gives “Connection Pooling”

HiveServer2 allows ODBC/JDBC connection

Mandatory for BI tools

Launches 1 or more App Masters on YARN
queues

App Masters launch Tez containers for SQL

Containers are released slowly and gradually

One SQL query per AM

Improving query startup performance

Initial query can take up to 30 seconds to create a Tez session

Ok for long running jobs, not ok for BI queries

First query usually takes longer to run since containers need to be reserved

Short lived jobs, like BI or Oozie may take longer to run

Enable container prewarming before job starts

After query finishes, do not return the containers right away

Improving query startup performance

hive.server2.tez.initialize.default.sessions

hive.server2.tez.default.queues

hive.server2.tez.sessions.per.default.queue

hive.prewarm.enabled

hive.prewarm.numcontainers

tez.am.session.min.held-containers

Avoid 15+s startup times for SQL queries

Higher throughput

Job submission Optimizations: Summary

Setting Recommended HDI Default Note

hive.server2.tez.initialize.default.sessions true Not Enabled I/E

hive.server2.tez.default.queues “default” or a custom

queue

Not Enabled I/E

hive.server2.tez.sessions.per.default.queue = max concurrent queries Not Enabled I/E

hive.prewarm.enabled true Not Enabled I

hive.prewarm.numcontainers 1-5 Not Enabled I

tez.am.session.min.held-containers 1-5 Not Enabled I

Zooming In: Execution Engine

Container Size and Heap Size

The unit of work in Tez

Run within a Java process

Exist within a Java Heap

Some fixed buffers

All within a YARN container

Java garbage collection will cause process size
to exceed “maximum” for short intervals.
Need to account for this or risk container kills.

Join Optimizations

Mappers read input; emit join key, value pair to intermediate file

Hadoop sorts and merges these pairs in shuffle stage

Shuffle stage expensive

Choosing right Join based on data can significantly improve perf

Types of Joins:

Shuffle Join

Map Join

Sort Merge Bucket Join

Join Optimizations
Join

Type

When How Hive settings Comments

Shuffle

Join

• Default choice

• Always works

• Reads from part of one of the

tables

• Buckets and sorts on Join key

• Sends one bucket to each reduce

• Join is done on the Reduce side

No specific Hive

setting needed

Works

everytime

Map

Join

• One table can fit in

memory

• Reads small table into memory

hash table

• Streams through part of the big file

• Joins each record from hash table

• Joins will be performed by the

mapper alone

hive.auto.convert

.join=true;

Very fast,

but limited.

Sort

Merge

Bucket

If both tables are:

• Sorted the same

• Bucketed the same

• Joining on the

sorted/bucketed

column

Each process:

• Reads a bucket from each table

• Processes the row with the lowest

value

hive.auto.convert

.sortmerge.join=

true

Very

efficient

The Map Join Optimization

SELECT * from big_table, small_table where big_table.x = small_table.y

Load small tables into memory in a hash table and distribute to all mappers.

Stream the hash table through the large table and perform the join.

Pro: Far more performant (10+x) than shuffle joins.

Con: Small tables must fit in RAM.

Con: If you estimate wrong, queries will fail.

Can turn it on/off using set hive.optimize.bucketmapjoin = true;

Can tune the size of table to cache by set hive.auto.convert.join.noconditionaltask

Physical Planning: Mappers Parallelism

Hadoop built around scale-out divide-and-
conquer processing.

Step 1 is to split the data to process and farm it
out to processing resources (Tez containers)

Containers may need to process multiple splits.

Split sizes are tunable

Adjusting split sizes may reduce latency

Controlling parallelism: # of Mappers

Split Size = Latency

Reduce split size when latency is too high

MapReduce: decrease mapred.max.split.size

Tez automatically chooses a split size

Its then adjusted based on (tez.grouping.min-
size, tez.grouping.max-size) settings

You can manually tune (tez.grouping.min-
size, tez.grouping.max-size)

Controlling Parallelism: # of reducers

ORC and Snappy offer high performance

But, Hive may choose too few reducers

Usually reducers are the bottlenecks

Original input data = 50GB

ORC w/ Snappy compression = 1GB

Hive estimates # of reducers as

of reducers = (#bytes input to mappers/hive.exec.reducers.bytes.per.reducer)

With default settings, this means 4 reducers

Tuning this value down will increase parallelism and may improve performance

Cost-Based Optimization

Based on Apache Calcite

Advanced re-writes

Join elimination

Bushy join transformation

Predicate factoring

More

Getting especially good with Hive 2

Requires stats to be built on tables

How to build stats:

analyze table customer compute statistics;

analyze table customer compute statistics for columns;

Advanced re-writes require column statistics.

For best results, do both.

Other optimizations

Increases performance 3x - 10x

Requires ORCFile

Coming soon: Text file support

Prevents job failure when hash table sizes are mis-estimated

Performance penalty

Tradeoff between safety and speed

Tez AM

Used to launch and control Tez containers, and for some communication

Singleton

Lightweight

Required size of AM related to query complexity

Even highly complex queries usually OK with 4 GB Tez AM

Control with tez.am.resource.memory.mb

Tez AM Timeout

Controls all Tez resources

Will exit if idle for a while.

Control with tez.session.am.dag.submit.timeout.secs

Recommendation: Don’t set higher than 1 hour. Zombie AMs are still possible. This is getting better.

Tez Container Min and Max Release Timeouts

You don’t want to exit because you want Tez containers hot and ready to go for performance.

You do want to exit because you want to be considerate to other people on the cluster.

tez.am.container.idle.release-timeout-min.millis, tez.am.container.idle.release-timeout-max.millis

Exit randomly somewhere in this interval

Ideally, Tez containers don’t exit between waiting for Map to finish and starting Reduce.

Execution Engine Optimizations: Summary

Setting Recommended HDI Default

Choosing right Join option Bucket join/Sort Merge join Shuffle join

hive.auto.convert.join.noconditionaltask.size 1/3 of -Xmx value Auto-Tuned

tez.grouping.min-size Decrease for better latency

Increase for more throughput

16777216

tez.grouping.max-size Decrease for better latency

Increase for more throughput

1073741824

hive.exec.reducers.bytes.per.reducer Decrease if reducers are the bottleneck 256MB

hive.cbo.enable true but need to rewrite tables True

hive.vectorized.execution.enabled true true

hive.mapjoin.hybridgrace.hashtable true = safer, slower; false = faster False

tez.am.resource.memory.mb 4GB upper bound for most Auto-Tuned

tez.session.am.dag.submit.timeout.secs 300+ 300

tez.am.container.idle.release-timeout-min.millis 20000+ 10000

tez.am.container.idle.release-timeout-max.millis 40000+ 20000

Zooming In: Storage Formats

Partitioning

In SQL-on-Hadoop subdirectories map to partitions.

Common strategy: one partition per day.

Partitioning allows queries to avoid scanning the entire dataset.

Queries can explicitly filter out based on the partition key.

Hive also supports Dynamic Partition Pruning (“DPP”) that permits partition elimination on-the-fly.

These approaches are almost always used.

Compression

Hadoop jobs are usually I/O bottlenecked

Compressing data can speed up I/O and network transfer

Splittable is important otherwise very few mappers will be created

If input data is text, bzip2 is best option since it is splittable

Columnar Formats: Why?

All data for a column stored contiguously on disk.

So you can read a column really fast.

Just like SQL needs to do.

Fast query

You have to convert data into it

Only do that if you need to query it many times

Columnar Formats: Options

ORCFile:

Best in Hive

Allows vectorized execution (Fast)

Allows ACID (Insert / Update / Delete)

Parquet:

Fully supported

No vectorization or ACID

Common for mixed Hive/Spark workloads

Typical ORC Tunings

Zlib = Smallest

Snappy = Faster

None = An Option

CREATE TABLE t (..) STORED AS orc tblproperties ("orc.compress"="Zlib");

Increase stripe size if you store large fields like blobs / XML documents, etc.

orc.stripe.size

Bloom filters accelerate highly selective queries

orc.bloom.filter.columns = csl of columns upon which we build bloom filters.

Using JSON with Hive

After CSV, most popular input format is JSON

Multiple options to parse JSON

Perf depends on scenario

Built in Hive UDFs

get_json_object UDF

get_json_tuple UDF

Custom SerDe

OpenX JSON SerDe

Using JSON with Hive
Option Pros Cons Best use case Native HDI

support?

get_json_object Flexible as

“schema on

read”

 Not performant

 Cannot handle

arrays

 JSONs w/ no nesting

 When schema has to

be decided at query

time

Yes

get_json_tuple More

performant

since JSON

object parsed

only once

 Very clunky for

nested JSON

document as

code will have

multiple Lateral

Views

 For JSONs with one

level nesting

 No support for

arrays

Yes

OpenX SerDe Very flexible

 Works with

complex

JSONs

 Does not come as

part of standard

HDI

 User must build

and upload JAR

 For complex JSONs

 This is the

recommended

approach

In progress

Storage Formats Optimizations: Summary

Setting Recommended HDI Default

Partitioning Always partition your data N/A

Compression Whenever possible use bzip2, LZO N/A

orc.compress ZLIB (space) or snappy (Speed) ZLIB

orc.stripe.size Only increase for large cells like documents 67,108,864

orc.bloom.filter.columns Create bloom filters for columns

commonly used in point lookups

N/A

JSON Use Hive built in SerDes for simple JSONs;

Use OpenX SerDe for complex JSONs

N/A

Zooming In: Filesystem

Decoupling storage and compute

Cloud Hadoop decouples storage with compute

Makes it easy to scale compute and storage separately

Cloud Storage Limits: Azure Storage bottleneck

Partitioned data on Year, Month, Day

Simultaneous Read/Write caused I/O
bottleneck

Partition 1 Partition 2 Partition 3

2014-10.part0 2014-11.part0 2014-12.part0

2014-10.part1 2014-11.part1 2014-12.part1

2014-10.part2 2014-11.part2 2014-12.part2

2014-10.part3 2014-11.part3 2014-12.part3

Cloud Storage Limits: Azure Storage bottleneck

Partitioned data on Year, Month, Day

Simultaneous Read/Write caused I/O
bottleneck

Partition 1 Partition 2 Partition 3

2014-10.part0 2014-11.part0 2014-12.part0

2014-10.part1 2014-11.part1 2014-12.part1

2014-10.part2 2014-11.part2 2014-12.part2

2014-10.part3 2014-11.part3 2014-12.part3

Cloud Storage Limits: Partitioning Azure Storage

Partitioned across multiple
storage accounts

Encode knowledge of
physical location into logical
partitioning key

Partition 1 Partition 2 Partition 3

2014-10.part0 2014-10.part1 2014-10.part2

2014-11.part0 2014-11.part1 2014-11.part2

2014-12.part0 2014-12.part1 2014-12.part2

2014-10.part3

2014-11.part3

2014-12.part3

Partition 4

Azure Data Lake Store

No limits on file sizes

Analytics scale on demand

No code rewrites as you increase size of data stored

Optimized for massive throughput

Optimized for IOT with high volume of small writes

TB GB

PB
TB

File System Optimizations: Summary

Setting Recommended HDI Default

File system to use as HDFS Azure Data Lake Store You decide at cluster time

Bringing it all together
ETL Ad-Hoc / Exploratory

Common

patterns

Cluster shape: Dedicated cluster

Job pattern: Fire and forget

Typical job: Full table scan, large joins

Cluster Shape: Shared cluster

Job pattern: Short running jobs

Typical job: Ad-hoc over refined data

Problems that

customer face

How do I run my jobs fast?

What tools do I have to just submit and

forget?

What file formats should I use?

How do I effectively share my cluster?

How do I optimize my output data for final

consumption?

How do I connect BI tools to my cluster?

Optimizations

Partitioning

Cost based optimizations

Large Joins: Increase Tez container size

Use Map join/Sort-merge when possible

Tweak reducers if necessary

ORC file

Use ADLS for large jobs

Increase container release timeouts

Use bzip2 for compression

Use ORC

Choose different cluster than batch jobs

Decrease session startup time

Prewarm containers

What is LLAP

Combines daemons and containers

Concurrent queries without specialized YARN queue setup

Multi-threaded execution of vectorized operator pipelines

Uses Asynchronous IO for efficient in-memory caching

Node

LLAP Process

Cache

Query Fragment

HDFS

Hive LLAP Performance

0

5

10

15

20

25

30

35

40

45

50

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S
p

e
e
d

u
p

 (
x

Fa
ct

o
r)

Q
u

e
ry

 T
im

e
(s

)
(L

o
w

e
r

is
 B

e
tt

e
r)

Hive 2 with LLAP averages 26x faster than Hive 1

Series1 Series2 Series3

…

Hadoop

clusterSDK, PowerShell
JDBC, ODBC, Visual Studio, Hue, Ambari

…

Interactive Hive

cluster (new)
SDK, PowerShell

JDBC, ODBC, Visual Studio, Hue, AmbariHadoop cluster

…

